Download Free Equation Of Time Book in PDF and EPUB Free Download. You can read online Equation Of Time and write the review.

The Equation-of-Time denotes the variance between Mean Time as told by the Stars and Solar Time as told by the Sun. It was initially identified by Ptolemy around 200 CE. During the Early Middle Ages, astronomers utilized this Equation to assist in lunar observations. Throughout the High & Late Middle Ages, sundials held prominence as the primary means of timekeeping, indicating Solar Time. However, in the 17th century CE, the emergence of precise pendulum clocks and watches prompted a gradual shift towards the adoption of Mean Time over Solar Time. In particular, the use of Solar Time corrected by the Equation-of-Time to determine local mean time, was used in the determination of longitude at sea. Prior to the availability of time signals, sundials - together with tables detailing the Equation - were used to set clocks.
One of TIME’s Ten Best Nonfiction Books of the Decade "Meet the new Stephen Hawking . . . The Order of Time is a dazzling book." --The Sunday Times From the bestselling author of Seven Brief Lessons on Physics, Reality Is Not What It Seems, Helgoland, and Anaximander comes a concise, elegant exploration of time. Why do we remember the past and not the future? What does it mean for time to "flow"? Do we exist in time or does time exist in us? In lyric, accessible prose, Carlo Rovelli invites us to consider questions about the nature of time that continue to puzzle physicists and philosophers alike. For most readers this is unfamiliar terrain. We all experience time, but the more scientists learn about it, the more mysterious it remains. We think of it as uniform and universal, moving steadily from past to future, measured by clocks. Rovelli tears down these assumptions one by one, revealing a strange universe where at the most fundamental level time disappears. He explains how the theory of quantum gravity attempts to understand and give meaning to the resulting extreme landscape of this timeless world. Weaving together ideas from philosophy, science and literature, he suggests that our perception of the flow of time depends on our perspective, better understood starting from the structure of our brain and emotions than from the physical universe. Already a bestseller in Italy, and written with the poetic vitality that made Seven Brief Lessons on Physics so appealing, The Order of Time offers a profoundly intelligent, culturally rich, novel appreciation of the mysteries of time.
Written in plain language, 'Astro Navigation Demystified' aims to make the art of astro navigation easy and enjoyable to learn.
#1 NEW YORK TIMES BESTSELLER • The epic story of the greatest quest in all of science—the holy grail of physics that would explain the creation of the universe—from renowned theoretical physicist and author of The Future of the Mind and The Future of Humanity. When Newton discovered the law of gravity, he unified the rules governing the heavens and the Earth. Since then, physicists have been placing new forces into ever-grander theories. But perhaps the ultimate challenge is achieving a monumental synthesis of the two remaining theories—relativity and the quantum theory. This would be the crowning achievement of science, a profound merging of all the forces of nature into one beautiful, magnificent equation to unlock the deepest mysteries in science: What happened before the Big Bang? What lies on the other side of a black hole? Are there other universes and dimensions? Is time travel possible? Why are we here? Kaku also explains the intense controversy swirling around this theory, with Nobel laureates taking opposite sides on this vital question. It is a captivating, gripping story; what’s at stake is nothing less than our conception of the universe. Written with Kaku’s trademark enthusiasm and clarity, this epic and engaging journey is the story of The God Equation.
Wouldn't it be great if there were a physics book that showed you how things work instead of telling you how? Finally, with Head First Physics, there is. This comprehensive book takes the stress out of learning mechanics and practical physics by providing a fun and engaging experience, especially for students who "just don't get it." Head First Physics offers a format that's rich in visuals and full of activities, including pictures, illustrations, puzzles, stories, and quizzes -- a mixed-media style proven to stimulate learning and retention. One look will convince you: This isn't mere theory, this is physics brought to life through real-world scenarios, simple experiments, and hypothetical projects. Head First Physics is perfect for anyone who's intrigued by how things work in the natural world. You'll quickly discover that physics isn't a dry subject. It's all about the world we live in, encompassing everything from falling objects and speeding cars, to conservation of energy and gravity and weightlessness, and orbital behavior. This book: Helps you think like a physicist so you can understand why things really work the way they do Gives you relevant examples so you can fully grasp the principles before moving on to more complex concepts Designed to be used as a supplement study guide for the College Board's Advanced Placement Physics B Exam Introduces principles for the purpose of solving real-world problems, not memorization Teaches you how to measure, observe, calculate -- and yes -- how to do the math Covers scientific notation, SI units, vectors, motion, momentum conservation, Newton's Laws, energy conservation, weight and mass, gravitation and orbits, circular motion and simple harmonic motion, and much more If "Myth Busters" and other TV programs make you curious about our physical world -- or if you're a student forced to take a physics course -- now you can pursue the subject without the dread of boredom or the fear that it will be over your head. Head First Physics comes to rescue with an innovative, engaging, and inspirational way to learn physics!
This book gives a rigourous discussion of the local effects of curvature on the behaviour of waves. In the course of this discussion many techniques are developed which are also needed for a study of more general problems, in which the gravitational field itself plays a dynamical role.