Download Free Epithelial Ions And Transport Book in PDF and EPUB Free Download. You can read online Epithelial Ions And Transport and write the review.

This book discusses unique ion channels and transporters that are located within epithelial tissues of various organs including the kidney, intestine, pancreas and respiratory tract. As the authors show, these channels and transporters play crucial roles in transepithelial ion and fluid transport across epithelia and their contribution to maintaining homeostasis. Readers will be introduced to the fundamentals of ion transport in terms of function, modelling, regulation, structure and pharmacology. This is the first of three volumes highlighting the importance of epithelial ion channels and transporters in basic physiology and pathophysiology of human diseases. This volume focuses on basic fundamentals of epithelial transport physiology. There is a range of chapters dedicated to specific aspects of epithelial ion transport and cell function. Accordingly, the authors discuss techniques used to determine epithelial function, principles of epithelia transport, polarization of epithelial cells, mathematical modelling of epithelial ion transport, protein folding of ion channels, degradation epithelial ion channels, fundamentals of epithelial sodium, potassium and chloride transport, fundamentals of bicarbonate secretion, volume regulation, and microRNA regulation of epithelial channels and transporters. Given its scope, Volume 1 offers a valuable resource for physiology students, scientists and clinicians alike.
This book discusses unique ion channels and transporters that are located within epithelial tissues of various organs including the kidney, intestine, pancreas and respiratory tract. The authors will show, that each of these channels and transporters play crucial roles in transepithelial ion and fluid transport across epithelia and their responsibility in maintaining homeostasis. The reader gains an understanding of the fundamentals of epithelial ion transport, in terms of function, modelling, regulation, trafficking, structure and pharmacology. This is the third of three volumes highlighting the importance of epithelial ion channels and transporters in basic physiology and pathophysiology of human diseases. The focus of this volume lies with different ion channel and transporter families. Additionally, this volume benefits from pharmaceutical contributors and their insights into recent pre-clinical drug discovery efforts and results from clinical trials. Overall, these chapters offer a more thorough coverage of individual epithelial ion channels and transporters from the 1st Edition, along with eleven new chapters. That makes Volume 3 an insightful contribution for physiology students, scientists and clinicians.
This book sheds new light on the physiology, molecular biology and pathophysiology of epithelial ion channels and transporters. It combines the basic cellular models and functions by means of a compelling clinical perspective, addressing aspects from the laboratory bench to the bedside. The individual chapters, written by leading scientists and clinicians, explore specific ion channels and transporters located in the epithelial tissues of the kidney, intestine, pancreas and respiratory tract, all of which play a crucial part in maintaining homeostasis. Further topics include the fundamentals of epithelial transport; mathematical modeling of ion transport; cell volume regulation; membrane protein folding and trafficking; transepithelial transport functions; and lastly, a discussion of transport proteins as potential pharmacological targets with a focus on the pharmacology of potassium channels.
Building from general principles, the authors clearly explain the fundamental role of epithelia in plasma electrolyte and water balance. Emphasis is placed on experimental approaches and methodology. A comprehensive glossary of terms is included.
This book discusses the unique ion channels and transporters found within the epithelial tissues of various organs, including the kidney, intestine, pancreas and respiratory tract. Authors focus on demonstrating the crucial roles that each of these channels and transporters play in transepithelial ion and fluid transport across epithelia, as well as in maintaining homeostasis. It allows readers to gain an understanding of the fundamentals of ion transport, in terms of function, modelling, regulation, trafficking, structure and pharmacology. This is the second of three volumes highlighting the importance of epithelial ion channels and transporters in basic physiology and pathophysiology of human diseases. This volume focuses on a wide array of epithelial tissues and the use of organoids to study epithelial function. Furthermore, clinical researchers and basic scientists from various fields provide a medical perspective on the physiology of a number of tissues and organs of the body including the pancreas, intestine, sweat glands, mammary gland, inner ear epithelia, retinal pigment epithelia of the eye, choroid plexus, and the ectodermal epithelia in dental enamel formation. This volume aims to ‘round out’ the reader’s journey from basic science to the laboratory bench and clinical management of molecular diseases, making Volume 2 a must-read for students and scientists in the field of physiology, as well as for clinicians.
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What the cells consists of? Where are its organelles? What function each organelle fulfils? From a chemists’ point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, some of the fundamental questions are about the physical movement of all these molecules between organelles within the cell, their exchange with the extracellular medium, as well as electrical phenomena resulting from such transport. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and various electrical effects, and that in turn leads to biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfill its function as a part of a larger organ or organism. The first volume of this book is an inventory of physical transport processes occurring in cells while this second volume provides a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Biological cell membranes regulate the transfer of matter and information between the intracellular and extracellular compartments as basic survival and maintenance functions for an organism. This volume contains a series of reviews that are c- cerned with how epithelial plasma membranes regulate the transport of solutes between the intracellular and extracellular compartments of a cell. This book is also an attempt to analyze the molecular basis for the movement of various solutes across an epithelial cell membrane. This volume is devoted to a diversity of epithelial transport mechanisms in rep- sentative cell membranes of a variety of living things. The ?rst section of the book (Chapters 1–6) focuses on mechanisms of solute transport in epithelia of inver- brates. The last section which comprises ten chapters (Chapters 7–16) deals with solute transporters in epithelial cell membranes of vertebrates. It is hoped that with this particular ordering the reader can glean a telescopic view of the evolutionary history of the various epithelial solute transporters.
This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences.