Download Free Epitaxial Microstructures Book in PDF and EPUB Free Download. You can read online Epitaxial Microstructures and write the review.

Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures. Atomic-level control of semiconductor microstructures Molecular beam epitaxy, metal-organic chemical vapor deposition Quantum wells and quantum wires Lasers, photon(IR)detectors, heterostructure transistors
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
This volume, titled Proceedings of the International Materials Symposium on Ce ramic Microstructures: Control at the Atomic Level summarizes the progress that has been achieved during the past decade in understanding and controlling microstructures in ceram ics. A particular emphasis of the symposium, and therefore of this volume, is advances in the characterization, understanding, and control of micro structures at the atomic or near-atomic level. This symposium is the fourth in a series of meetings, held every ten years, devoted to ceramic microstructures. The inaugural meeting took place in 1966, and focussed on the analysis, significance, and production of microstructure; the symposium emphasized the need for, and importance of characterization in achieving a more complete understanding of the physical and chemical characteristics of ceramics. A consensus emerged at that meeting on the critical importance of characterization in achieving a more complete understanding of ceramic properties. That point of view became widely accepted in the ensuing decade. The second meeting took place in 1976 at a time of world-wide energy shortages and thus emphasized energy-related applications of ceramics, and more specifically, microstructure-property relationships of those materials. The third meeting, held in 1986, was devoted to the role that interfaces played both during processing, and in influencing the ultimate properties of single and polyphase ceramics, and ceramic-metal systems.
Proceedings of the NATO Advanced Research Workshop, Ringberg in Rottach Egern, Germany, February 20--24, 1995
Microstructure of epitaxial thin films grown on sapphire substrates using the metal organic chemical vapor deposition technique were found to depend on the substrates surface structure. Epitaxial TiO[sub 2] films grown on the sapphire (0001) substrates were highly-oriented polycrystal and the films on the (1120) substrates were single crystal. First-principles total energy calculations were carried out to gain atomistic understandings of sapphire surface structures and their effects on microstructure of epitaxial films. The surface terminating atom planes were found to be Al atoms for the (0001) surface and O atoms for the (1120). Minimum step heights were one sixth of the lattice constant c for the (0001) and one half of the lattice constant a for the (1120). Steps of minimum height or its odd multiples on sapphire (0001) surface double the number of variants in the deposited films. The symmetry and step of the substrate surface and symmetry of the epitaxial growth plane controlled the microstructure of the epitaxial films.
This book covers the experimental and theoretical understanding of surface and thin film processes. It presents a unique description of surface processes in adsorption and crystal growth, including bonding in metals and semiconductors. Emphasis is placed on the strong link between science and technology in the description of, and research for, new devices based on thin film and surface science. Practical experimental design, sample preparation and analytical techniques are covered, including detailed discussions of Auger electron spectroscopy and microscopy. Thermodynamic and kinetic models of structure are emphasised throughout. The book provides extensive leads into practical and research literature, as well as resources on the World Wide Web (see http://venables.asu.edu/book). Each chapter contains problems which aim to develop awareness of the subject and the methods used. Aimed as a graduate textbook, this book will also be useful as a sourcebook for graduate students, researchers and practitioners in physics, chemistry, materials science and engineering.
This book covers the entire spectrum of assembly, packaging and testing of MEMs (microelectro-mechanical systems) and microsystems, from essential enabling technologies to applications in key industries of life sciences, telecommunications and aerospace engineering.
Treatise on Materials Science and Technology, Volume 11: Properties And Microstructure covers the parameters important to understanding microstructural effects. The book discusses the direct observation and characterization of defects in materials; the cause and effect of crystal defects in silicon integrated circuits; as well as the microstructure of some noncrystalline ceramics. The text also describes microstructural defects in the important semiconductors silicon and germanium, microstructural effects in glasses, microstructural effects on the mechanical properties of ceramics, and finally, microstructures in ferrites. Materials scientists, materials engineers, and graduate students taking related courses will find the book invaluable.
This book is an introduction to quantum states and of their scattering in semiconductor nanostructures. Written with exercises and detailed solutions, it is designed to enable readers to start modelling actual electron states and scattering in nanostructures. It first looks at practical aspects of quantum states and emphasises the variational and perturbation approaches. Following this there is analysis of quasi two-dimensional materials, including discussion of the eigenstates of nanostructures, scattering mechanisms and their numerical results.Focussing on practical applications, this book moves away from standard discourse on theory and provides students of physics, nanotechnology and materials science with the opportunity to fully understand the electronic properties of nanostructures.