Download Free Epigenetics In Human Reproduction And Development Book in PDF and EPUB Free Download. You can read online Epigenetics In Human Reproduction And Development and write the review.

Epigenetics is defined as heritable changes that do not affect the DNA sequence but influence gene expression. Epigenetic changes occur at the levels of DNA, histone, protein, and chromatin structures. Proper epigenetic modifications are essential for cell differentiation and function during development, while some epigenetic modifications are passed on from parents to offspring through gametes. Therefore, alterations of epigenetic states would have serious consequences for human development and health. This realization and the advent of new technologies have encouraged the advance of epigenetic studies in recent years. Nonetheless, many aspects of epigenetics, such as regulatory mechanisms and evolutional advantages, remain to be better understood.Written by 26 scientists at the forefront of epigenetics research, this book discusses the different facets of epigenetics: from gametogenesis to child development, as well as from mechanistic studies in animal models to reviews of human clinical data.
This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.
Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.
This book brings together genetics, reproductive biology and medicine for an integrative view of the emerging specialism of reproductive genetics.
Recent advances in genomic and omics analysis have triggered a revolution affecting nearly every field of medicine, including reproductive medicine, obstetrics, gynecology, andrology, and infertility treatment. Reproductomics: The –Omics Revolution and Its Impact on Human Reproductive Medicine demonstrates how various omics technologies are already aiding fertility specialists and clinicians in characterizing patients, counseling couples towards pregnancy success, informing embryo selection, and supporting many other positive outcomes. A diverse range of chapters from international experts examine the complex relationship between genomics, transcriptomics, proteomics, and metabolomics and their role in human reproduction, identifying molecular factors of clinical significance. With this book Editors Jaime Gosálvez and José A. Horcajadas have provided researchers and clinicians with a strong foundation for a new era of personalized reproductive medicine. - Thoroughly discusses how genomics and other omics approaches aid clinicians in various areas of reproductive medicine - Identifies specific genomic and molecular factors of translational value in treating infertility and analyzing patient data - Features chapter contributions by leading international experts
This is a forward-looking clinical reference of definitive authority on today's headline controversies surrounding in vitro fertilization (IVF) and reproductive genetics. Written by leading experts from medicine, education, psychology, ethics, counseling, and other disciplines studying fertility and genetics, the book contains nearly 70 chapters in seven sections. The introductory section deals with biology, business, morality and society in IVF and reproductive genetics; other sections focus on IVF outcomes, personal ethics and business, biology of the egg, sperm and embryo, implantation, IVF and society, and such 21st century topics as space travel and human reproduction, the disappearing male,and the future of motherhood. Includes bibliographic references and index.
Human reproductive cloning is an assisted reproductive technology that would be carried out with the goal of creating a newborn genetically identical to another human being. It is currently the subject of much debate around the world, involving a variety of ethical, religious, societal, scientific, and medical issues. Scientific and Medical Aspects of Human Reproductive Cloning considers the scientific and medical sides of this issue, plus ethical issues that pertain to human-subjects research. Based on experience with reproductive cloning in animals, the report concludes that human reproductive cloning would be dangerous for the woman, fetus, and newborn, and is likely to fail. The study panel did not address the issue of whether human reproductive cloning, even if it were found to be medically safe, would beâ€"or would not beâ€"acceptable to individuals or society.
This landmark publication provides the first definitive account of how and why subtle influences on the fetus and during early life can have such profound consequences for adult health and diseases. Although the epidemiological evidence for this link has long proved compelling, it is only much more recently that the scientific and physiological basis has begun to be studied in depth and fully understood. The compilation, written by many of the world's leading experts in this exciting field, summarizes these scientific and clinical advances.
Infertility affects more than one in ten couples worldwide and is related to highly heterogeneous pathologies sometimes only discernible in the germ line. Its complex etiology often, but not always, includes genetic factors besides anatomical defects, immunological interference, and environmental aspects. Nearly 30% of infertility cases are probably caused only by genetic defects. Thereby experimental animal knockout models convincingly show that infertility can be caused by single or multiple gene defects. Translating those basic research findings into clinical studies is challenging, leaving genetic causes for the vast majority of infertility patients unexplained. Nevertheless, a large number of candidate genes have been revealed by sophisticated molecular methods. This book provides a comprehensive overview on the subject of infertility written by the leading authorities in this field. It covers topics including basic biological, cytological, and molecular studies, as well as common and uncommon syndromes. It is a must-read for human geneticists, endocrinologists, epidemiologists, zoologists, and counsellors in human genetics, infertility, and assisted reproduction.
Transgenerational Epigenetics, Second Edition, offers the only up-to-date, comprehensive analysis of the inheritance of epigenetic phenomena between generations with an emphasis on human disease relevance, drug discovery, and next steps in clinical translation. International experts discuss mechanisms of epigenetic inheritance, its expression in animal and plant models, and how human ailments, such as metabolic disorders and cardiovascular disease are influenced by transgenerational epigenetic inheritance. Where evidence is sufficient, epigenetic clinical interventions are proposed that may help prevent or reduce the severity of disease before offspring are born. This edition has been thoroughly revised in each disease area, featuring newly researched actors in epigenetic regulation, including long noncoding RNA in addition to histone modifications and DNA methylation. Therapeutic pathways in treating cancer and extending human longevity are also considered, as are current debates and future directions for research.