Download Free Epigenetics And Human Health Book in PDF and EPUB Free Download. You can read online Epigenetics And Human Health and write the review.

After first introducing the concept of epigenetics, this handbook and ready reference provides an overview of the main research on epigenetics. It adopts a multidisciplinary approach, involving molecular biology, molecular epidemiology and nutritional science, with a special focus of the book is on disease prevention and treatment. Of interest to all healthcare-related professionals as well as nutritionists, and the medical community focusing on disease prevention.
After first introducing the concept of epigenetics, this handbook and ready reference provides an overview of the main research on epigenetics. It adopts a multidisciplinary approach, involving molecular biology, molecular epidemiology and nutritional science, with a special focus of the book is on disease prevention and treatment. Of interest to all healthcare-related professionals as well as nutritionists, and the medical community focusing on disease prevention.
Biomedical research in the first decade of the 21st century has been marked by a rapidly growing interest in epigenetics. The reasons for this are numerous, but primarily it stems from the mounting realization that research programs focused solely on DNA sequence variation, despite their breadth and depth, are unlikely to address all fundamental aspects of human biology. Some questions are evident even to non-biologists. How does a single zygote develop into a complex multicellular organism composed of dozens of different tissues and hundreds of cell types, all genetically identical but performing very different functions? Why do monozygotic twins, despite their stunning external similarities, often exhibit significant differences in personality and predisposition to disease? If environmental factors are solely the cause of such variation, why are similar differences also observed between genetically identical animals housed in a uniform environment? Over the last couple of decades, epigenetics has undergone a significant metamorphosis from an abstract developmental theory to a very dynamic and rapidly developing branch of molecular biology. This volume represents a compilation of our current understanding about the key aspects of epigenetic processes in the brain and their role in behavior. The chapters in this book bring together some of the leading researchers in the field of behavioral epigenetics. They explore many of the epigenetic processes which operate or may be operating to mediate neurobiological functions in the brain and describe how perturbations to these systems may play a key role in mediating behavior and the origin of brain diseases.
Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs
Environmental Epigenetics in Toxicology and Public Health provides in-depth discussions of the suite of complex environmental factors shown to impact epigenetic components within the cell, as well as evidence that these epigenetic modifications are tied to early and later life health effects. This book offers a translational research perspective, highlighting both in vivo and human population-based evidence for ties between the environment, the epigenome, and health outcomes, with an emphasis on evidence for transgenerational effects of exposures, as well as developmental windows of susceptibility to environmentally-linked epigenetic effects. This volume in the Translational Epigenetics series aides in the development of new therapeutic options meant to reverse inappropriate epigenetic alterations, helping researchers in their efforts prevent and treat a variety of chronic diseases tied to environmental exposures. Offers a thorough discussion of the environmental factors influencing epigenetic mechanisms in early and late life, and in transgenerational inheritance Examines both animal model and human population-based research in environmental epigenetics, highlighting developmental windows of vulnerability to epigenetic modification Features contributions from international experts in the field
This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.
Epigenetics in Human Disease, Second Edition examines the diseases and conditions on which we have advanced knowledge of epigenetic mechanisms, such as cancer, autoimmune disorders, aging, metabolic disorders, neurobiological disorders and cardiovascular disease. In addition to detailing the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, novel epigenetic approaches to treatment are also explored. Fully revised and up-to-date, this new edition discusses topics of current interest in epigenetic research, including stem cell epigenetic therapy, bioinformatic analysis of NGS data, and epigenetic mechanisms of imprinting disorders. Further sections explore online epigenetic tools and datasets, early-life programming of epigenetics in age-related diseases, the epigenetics of addiction and suicide, and epigenetic approaches to regulating and preventing diabetes, cardiac disease, allergic disorders, Alzheimer’s disease, respiratory diseases, and many other human maladies. Includes contributions from leading international investigators involved in translational epigenetic research and therapeutic applications Integrates methods and applications with fundamental chapters on epigenetics in human disease, along with an evaluation of recent clinical breakthroughs Presents side-by-side coverage of the basis of epigenetic diseases and treatment pathways Provides a fully revised resource covering current developments, including stem cell epigenetic therapy, the bioinformatic analysis of NGS data, epigenetic mechanisms of imprinting disorders, online epigenetic tools and datasets, and more
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
Nutrition and Epigenetics presents new information on the action of diet and nutritional determinants in regulating the epigenetic control of gene expression in health and disease. Each chapter gives a unique perspective on a different nutritional or dietary component or group of components, and reveals novel mechanisms by which dietary factors mod
The view “It’s all in our genes and we cannot change it” developed in the past 150 years since Gregor Mendel’s experiments with flowering pea plants. However, there is a special form of genetics, referred to as epigenetics, which does not involve any change of our genes but regulates how and when they are used. In the cell nucleus our genes are packed into chromatin, which is a complex of histone proteins and genomic DNA, representing the molecular basis of epigenetics. Our environment and lifestyle decisions influence the epigenetics of our cells and organs, i.e. epigenetics changes dynamically throughout our whole life. Thus, we have the chance to change our epigenetics in a positive as well as negative way and present the onset of diseases, such a type 2 diabetes or cancer. This textbook provides a molecular explanation how our genome is connected with environmental signals. It outlines that epigenetic programming is a learning process that results in epigenetic memory in each of the cells of our body. The central importance of epigenetics during embryogenesis and cellular differentiation as well as in the process of aging and the risk for the development of cancer are discussed. Moreover, the role of the epigenome as a molecular storage of cellular events not only in the brain but also in metabolic organs and in the immune system is described. The book represents an updated but simplified version of our textbook “Human Epigenomics” (ISBN 978-981-10-7614-8). The first five chapters explain the molecular basis of epigenetics, while the following seven chapters provide examples for the impact of epigenetics in human health and disease.