Download Free Epigenetics And Development Book in PDF and EPUB Free Download. You can read online Epigenetics And Development and write the review.

Epigenetics fine-tunes the life processes dictated by DNA sequences, but also kick-starts pathophysiological processes including diabetes, AIDS and cancer. This volume tracks the latest research on epigenetics, including work on new-generation therapeutics.
Illuminating the processes and patterns that link genotype to phenotype, epigenetics seeks to explain features, characters, and developmental mechanisms that can only be understood in terms of interactions that arise above the level of the gene. With chapters written by leading authorities, this volume offers a broad integrative survey of epigenetics. Approaching this complex subject from a variety of perspectives, it presents a broad, historically grounded view that demonstrates the utility of this approach for understanding complex biological systems in development, disease, and evolution. Chapters cover such topics as morphogenesis and organ formation, conceptual foundations, and cell differentiation, and together demonstrate that the integration of epigenetics into mainstream developmental biology is essential for answering fundamental questions about how phenotypic traits are produced.
Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.
This new volume of Current Topics in Developmental Biology covers epigenetics and development, with contributions from an international board of authors. The chapters provide a comprehensive set of reviews covering such topics as epigenetic marking of the zebrafish developmental program, functions of DNA methylation and hydroxymethylation in mammalian development, and reprogramming and the pluripotent stem cell cycle. Covers the area of epigenetics and development International board of authors Provides a comprehensive set of reviews covering such topics as epigenetic marking of the zebrafish developmental program, functions of DNA methylation and hydroxymethylation in mammalian development, and reprogramming and the pluripotent stem cell cycle
An accessible introduction to behavioral epigenetics, The Developing Genome explores how experiences influence genetic activity. We develop as we do not because of the genes we have, but because of what our genes do. The Developing Genome explains this new discipline and its revolutionary implications, changing how we understand development and evolution.
Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases
Epigenetic Gene Expression and Regulation reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies. The book shows how these heritable mechanisms allow individual cells to establish stable and unique patterns of gene expression that can be passed through cell divisions without DNA mutations, thereby establishing how different heritable patterns of gene regulation control cell differentiation and organogenesis, resulting in a distinct human organism with a variety of differing cellular functions and tissues. The work begins with basic biology, encompasses methods, cellular and tissue organization, topical issues in epigenetic evolution and environmental epigenesis, and lastly clinical disease discovery and treatment. Each highly illustrated chapter is organized to briefly summarize current research, provide appropriate pedagogical guidance, pertinent methods, relevant model organisms, and clinical examples. Reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies Helps readers understand how epigenetic marks are targeted, and to what extent transgenerational epigenetic changes are instilled and possibly passed onto offspring Chapters are replete with clinical examples to empower the basic biology with translational significance Offers more than 100 illustrations to distill key concepts and decipher complex science
The exploding field of epigenetics is challenging the dogma of traditional Mendelian inheritance. Epigenetics plays an important role in shaping who we are and contributes to our prospects of health and disease. While early epigenetic research focused on plant and animal models and in vitro experiments, population-based epidemiologic studies increasingly incorporate epigenetic components. The relevance of epigenetic marks, such as DNA methylation, genomic imprinting, and histone modification for disease causation has yet to be fully explored. This book covers the basic concepts of epigenetic epidemiology, discusses challenges in study design, analysis, and interpretation, epigenetic laboratory techniques, the influence of of age and environmental factors on shaping the epigenome, the role of epigenetics in the developmental origins hypothesis, and provides the state of the art on the epigenetic epidemiology of various health conditions including childhood syndromes, cancer, infectious diseases, inflammation and rheumatoid arthritis, asthma, autism and other neurodevelopmental disorders, psychiatric disorders, diabetes, obesity and metabolic disorders, and atherosclerosis. With contributions from: Peter Jones, Jean-Pierre Issa, Gavin Kelsey, Robert Waterland, and many other experts in epigenetics!
Perinatal and Developmental Epigenetics, Volume 32, a new volume in the Translational Epigenetics series, provides a thorough overview of epigenetics in the early developmental and perinatal stages, illuminating pathways for drug discovery and clinical advances. Here, over 25 international researchers examine recent steps forward in our understanding of epigenetic programming during perinatal and early development. The book opens with an in-depth introduction to known and newly discovered epigenetic marks and how they regulate various cellular processes. Later sections examine various prenatal and perinatal environmental experiences and their ability to derail the normal developmental trajectory via epigenetic reprogramming. Insights and suggestions for future research illuminate approaches for identifying individual disease susceptibility. Concluding chapters highlight preventative and targeted therapeutic pathways to improve quality of life into adulthood. Examines disease onset stemming from epigenetic changes during the perinatal periods Features contributions from international experts in the field, including basic biology, disease research and drug discovery Offers intervention strategies to mitigate adverse developmental programming to improve health outcomes
Epigenetics is defined as heritable changes that do not affect the DNA sequence but influence gene expression. Epigenetic changes occur at the levels of DNA, histone, protein, and chromatin structures. Proper epigenetic modifications are essential for cell differentiation and function during development, while some epigenetic modifications are passed on from parents to offspring through gametes. Therefore, alterations of epigenetic states would have serious consequences for human development and health. This realization and the advent of new technologies have encouraged the advance of epigenetic studies in recent years. Nonetheless, many aspects of epigenetics, such as regulatory mechanisms and evolutional advantages, remain to be better understood.Written by 26 scientists at the forefront of epigenetics research, this book discusses the different facets of epigenetics: from gametogenesis to child development, as well as from mechanistic studies in animal models to reviews of human clinical data.