Download Free Epigenetic Regulation Of Skin Development And Regeneration Book in PDF and EPUB Free Download. You can read online Epigenetic Regulation Of Skin Development And Regeneration and write the review.

This indispensable volume highlights recent studies identifying epigenetic mechanisms as essential regulators of skin development, stem cell activity and regeneration. Chapters are contributed by leading experts and promote the skin as an accessible model system for studying mechanisms that control organ development and regeneration. The timely discussions contained throughout are of broad relevance to other areas of biology and medicine and can help inform the development of novel therapeutics for skin disorders as well as new approaches to skin regeneration that target the epigenome. Part of the highly successful Stem Cells and Regenerative Medicine series, Epigenetic Regulation of Skin Development and Regeneration uncovers the fundamental significance of epigenetic mechanisms in skin development and regeneration, and emphasizes the development of new therapies for a number of skin disorders, such as pathological conditions of epidermal differentiation, pigmentation and carcinogenesis. At least six categories of researchers will find this book essential, including stem cell, developmental, hair follicle or molecular biologists, and gerontologists or clinical dermatologists.
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.
Epigenetics is defined as heritable changes that do not affect the DNA sequence but influence gene expression. Epigenetic changes occur at the levels of DNA, histone, protein, and chromatin structures. Proper epigenetic modifications are essential for cell differentiation and function during development, while some epigenetic modifications are passed on from parents to offspring through gametes. Therefore, alterations of epigenetic states would have serious consequences for human development and health. This realization and the advent of new technologies have encouraged the advance of epigenetic studies in recent years. Nonetheless, many aspects of epigenetics, such as regulatory mechanisms and evolutional advantages, remain to be better understood.Written by 26 scientists at the forefront of epigenetics research, this book discusses the different facets of epigenetics: from gametogenesis to child development, as well as from mechanistic studies in animal models to reviews of human clinical data.
This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease
In recent years, the field of epigenetics has grown significantly, driving new understanding of human developmental processes and disease expression, as well as advances in diagnostics and therapeutics. As the field of epigenetics continues to grow, methods and technologies have multiplied, resulting in a wide range of approaches and tools researchers might employ. Epigenetics Methods offers comprehensive instruction in methods, protocols, and experimental approaches applied in field of epigenetics. Here, across thirty-five chapters, specialists offer step-by-step overviews of methods used to study various epigenetic mechanisms, as employed in basic and translational research. Leading the reader from fundamental to more advanced methods, the book begins with thorough instruction in DNA methylation techniques and gene or locus-specific methylation analyses, followed by histone modification methods, chromatin evaluation, enzyme analyses of histone methylation, and studies of non-coding RNAs as epigenetic modulators. Recently developed techniques and technologies discussed include single-cell epigenomics, epigenetic editing, computational epigenetics, systems biology epigenetic methods, and forensic epigenetic approaches. Epigenetics methods currently in-development, and their implication for future research, are also considered in-depth. In addition, as with the wider life sciences, reproducibility across experiments, labs, and subdisciplines is a growing issue for epigenetics researchers. This volume provides consensus-driven methods instruction and overviews. Tollefsbol and contributing authors survey the range of existing methods; identify best practices, common themes, and challenges; and bring unity of approach to a diverse and ever-evolving field. - Includes contributions by leading international investigators involved in epigenetic research and clinical and therapeutic application - Integrates technology and translation with fundamental chapters on epigenetics methods, as well as chapters on more novel and advanced epigenetics methods - Written at verbal and technical levels that can be understood by scientists and students alike - Includes chapters on state-of-the-art techniques such as single-cell epigenomics, use of CRISPR/Cas9 for epigenetic editing, and epigenetics methods applied to forensics
Epigenetics and Regeneration compiles the first foundational reference on epigenetic mechanisms governing tissue development, repair, homeostasis, and regeneration, as well as pathways to employ these mechanisms in clinical practice and translational science. In this book, life science researchers, clinicians, and students will discover an interdisciplinary resource bringing together common themes in the field, background overviews, research methods, recent advances, and opportunities for drug discovery. Throughout this volume, special attention is paid to pre-clinical and first clinical studies aimed at increasing the regenerative potential of damaged tissues by epigenetic drugs, as well as innovative, discipline spanning strategies to enhance cell reprogramming. As an all-inclusive, evidence-based volume, Epigenetics and Regeneration will stimulate discussion and boost new research in this fascinating and impactful area of translational epigenetics. - Provides a foundational overview of epigenetics in regenerative medicine - Examines epigenetic components of tissue regeneration for a variety of organ systems and tissue types, as well as current attempts to employ these mechanisms in clinical practice - Offers researchers, students, clinicians, and pharmacologists the tools they need to enhance tissue development, repair, homeostasis, and regeneration and explore new epigenetic therapeutic pathways - Features chapter contributions from leading international researchers and clinicians in the fields of epigenetics and regenerative medicine
Regenerative Biology and Medicine, Second Edition — Winner of a 2013 Highly Commended BMA Medical Book Award for Medicine — discusses the fundamentals of regenerative biology and medicine. It provides a comprehensive overview, which integrates old and new data into an ever-clearer global picture. The book is organized into three parts. Part I discusses the mechanisms and the basic biology of regeneration, while Part II deals with the strategies of regenerative medicine developed for restoring tissue, organ, and appendage structures. Part III reflects on the achievements of regenerative biology and medicine; future challenges; bioethical issues that need to be addressed; and the most promising developments in regenerative medicine. The book is designed for multiple audiences: undergraduate students, graduate students, medical students and postdoctoral fellows, and research investigators interested in an overall synthesis of this field. It will also appeal to investigators from fields not directly related to regenerative biology and medicine, such as chemistry, informatics, computer science, mathematics, physics, and engineering. - Highly Commended 2013 BMA Medical Book Award for Medicine - Includes coverage of skin, hair, teeth, cornea, and central neural tissues - Provides description of regenetive medicine in digestive, respiratory, urogenital, musculoskeletal, and cardiovascular systems - Includes amphibians as powerful research models with discussion of appendage regeneration in amphibians and mammals
Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs
Stem cells have been gaining a lot of attention in recent years. Their unique potential to self-renew and differentiate has turned them into an attractive model for the study of basic biological questions such as cell division, replication, transcription, cell fate decisions, and more. With embryonic stem (ES) cells that can generate each cell type in the mammalian body and adult stem cells that are able to give rise to the cells within a given lineage, basic questions at different developmental stages can be addressed. Importantly, both adult and embryonic stem cells provide an excellent tool for cell therapy, making stem cell research ever more pertinent to regenerative medicine. As the title The Cell Biology of Stem Cells suggests, our book deals with multiple aspects of stem cell biology, ranging from their basic molecular characteristics to the in vivo stem cell trafficking of adult stem cells and the adult stem-cell niche, and ends with a visit to regeneration and cell fate reprogramming. In the first chapter, “Early embryonic cell fate decisions in the mouse”, Amy Ralson and Yojiro Yamanaka describe the mechanisms that support early developmental decisions in the mouse pre-implantation embryo and the current understanding of the source of the most immature stem cell types, which includes ES cells, trophoblast stem (TS) cells and extraembryonic endoderm stem (XEN) cells.