Download Free Eocene Oligocene Climatic And Biotic Evolution Book in PDF and EPUB Free Download. You can read online Eocene Oligocene Climatic And Biotic Evolution and write the review.

The transition from the Eocene to the Oligocene epochs was the most significant event in earth history since the extinction of dinosaurs. As the first Antarctic ice sheets appeared, major extinctions and faunal turnovers took place on the land and in the sea, eliminating forms adapted to a tropical world and replacing them with the ancestors of most of our modern animal and plant life. Through a detailed study of climatic conditions and of organisms buried in Eocene-Oligocene sediments, this volume shows that the separation of Antarctica from Australia was a critical factor in changing oceanic circulation and ultimately world climate. In this book forty-eight leading scientists examine the full range of Eocene and Oligocene phenomena. Their articles cover nearly every major group of organisms in the ocean and on land and include evidence from paleontology, stable isotopes, sedimentology, seismology, and computer climatic modeling. The volume concludes with an update of the geochronologic framework of the late Paleogene. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book is designed as a source and reference for people interested in the history and fossil record of North American tertiary mammals. Each chapter covers a different family or order, and includes information on anatomical features, systematics, the distribution of the genera and species at different fossil localities, and a discussion of their paleobiology. Many of these groups have never been covered in this fashion before.
The Late Eocene and the Eocene-Oligocene (E-O) transition mark the most profound oceanographic and climatic changes of the past 50 million years of Earth history, with cooling beginning in the middle Eocene and culminating in the major earliest Oligocene Oi-1 isotopic event. The Late Eocene is characterized by an accelerated global cooling, with a sharp temperature drop near the E-O boundary, and significant stepwise floral and faunal turnovers. These global climate changes are commonly attributed to the expansion of the Antarctic ice cap following its gradual isolation from other continental masses. However, multiple extraterrestrial bolide impacts, possibly related to a comet shower that lasted more than 2 million years, may have played an important role in deteriorating the global climate at that time. This book provides an up-to-date review of what happened on Earth at the end of the Eocene Epoch.
Provides the latest information in dating and correlation of the strata of late middle Eocene through early Oligocene age in North America.
The fossil history of plant life in Antarctica is central to our understanding of the evolution of vegetation through geological time and also plays a key role in reconstructing past configurations of the continents and associated climatic conditions. This book provides the only detailed overview of the development of Antarctic vegetation from the Devonian period to the present day, presenting Earth scientists with valuable insights into the break up of the ancient supercontinent of Gondwana. Details of specific floras and ecosystems are provided within the context of changing geological, geographical and environmental conditions, alongside comparisons with contemporaneous and modern ecosystems. The authors demonstrate how palaeobotany contributes to our understanding of the paleoenvironmental changes in the southern hemisphere during this period of Earth history. The book is a complete and up-to-date reference for researchers and students in Antarctic paleobotany and terrestrial paleoecology.
Antarctic Climate Evolution is the first book dedicated to furthering knowledge on the evolution of the world's largest ice sheet over its ~34 million year history. This volume provides the latest information on subjects ranging from terrestrial and marine geology to sedimentology and glacier geophysics. - An overview of Antarctic climate change, analyzing historical, present-day and future developments - Contributions from leading experts and scholars from around the world - Informs and updates climate change scientists and experts in related areas of study
What can we expect as global change progresses? Will there be thresholds that trigger sudden shifts in environmental conditionsâ€"or that cause catastrophic destruction of life? Effects of Past Global Change on Life explores what earth scientists are learning about the impact of large-scale environmental changes on ancient lifeâ€"and how these findings may help us resolve today's environmental controversies. Leading authorities discuss historical climate trends and what can be learned from the mass extinctions and other critical periods about the rise and fall of plant and animal species in response to global change. The volume develops a picture of how environmental change has closed some evolutionary doors while opening othersâ€"including profound effects on the early members of the human family. An expert panel offers specific recommendations on expanding research and improving investigative toolsâ€"and targets historical periods and geological and biological patterns with the most promise of shedding light on future developments. This readable and informative book will be of special interest to professionals in the earth sciences and the environmental community as well as concerned policymakers.
The marine Eocene-Oligocene transition of 34 million years ago was a critical turning point in Earth's climatic history, when the warm, high-diversity "greenhouse" world of the early Eocene ceded to the glacial, "icehouse" conditions of the early Oligocene. This book surveys the advances in stratigraphic and paleontological research and isotopic analysis made since 1989 in regard to marine deposits around the world. In particular, it summarizes the high-resolution details of the so-called doubthouse interval (roughly 45 to 34 million years ago), which is critical to testing climatic and evolutionary hypotheses about the Eocene deterioration. The authors' goals are to discuss the latest information concerning climatic and oceanographic change associated with this transition and to examine geographic and taxonomic patterns in biotic turnover that provide clues about where, when, and how fast these environmental changes happened. They address a range of topics, including the tectonic and paleogeographic setting of the Paleogene; specific issues related to the stratigraphy of shelf deposits; advances in recognizing and correlating boundary sections; trends in the expression of climate change; and patterns of faunal and floral turnover. In the process, they produce a valuable synthesis of patterns of change by latitude and environment.
Publisher description