Download Free Enzymic Methods Book in PDF and EPUB Free Download. You can read online Enzymic Methods and write the review.

Enzymatic Plastic Degradation, Volume 648 in the Methods in Enzymology series, continues the legacy of this premier serial with chapters authored by leaders in the field. Chapters in this latest release include Evaluating plastic pollution and environmental degradation, Assessment methods for microplastic pollution in the oceans and fresh water, Exploring microbial consortia from various environments for plastic degradation, Characterization of filamentous fungi for attack on synthetic polymers via biological Fenton chemistry, Synthesis of radioactive-labeled nanoplastics for assaying the environmental (microbial) PS degradation, Exploring metagenome for plastic degrading enzymes, Cutinases from thermophilic bacteria (actinomycetes): from identification to functional and structural characterization, and much more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series Covers the latest research and technologies in enzymatic plastic degradation
De Novo Enzyme Design, the newest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume includes the design of metal binding maquettes, insertion of non-natural cofactors, Cu metallopeptides, non-covalent interactions in peptide assemblies, peptide binding and bundling, heteronuclear metalloenzymes, florinated peptides, De Novo imaging agents, and protein-protein interaction. Continues the legacy of this premier serial with quality chapters on de novo enzyme design Represents the newest volume in the Methods in Enzymology series, providing premier, quality chapters authored by leaders in the field Ideal reference for those interested in the study of enzyme design that looks at both structure and mechanism
Methods to Determine Enzymatic Activity is a textbook about industrial enzymes. The book features definitions, classifications and applications of selected enzymes important in industry and in biotechnological processes. Analytical methods for these enzymes are also included in the text. The main objective of this textbook is to provide readers information focused on the current analysis methods of enzymatic activity at qualitative and quantitative levels. Each chapter is about one specific enzyme and contains information about its substrate and some biochemical properties. The methodologies are presented as an experimental protocol allowing interested readers to reproduce the experimental methods detailed within the textbook. These protocols contain the principle of the technique, materials, methods, and all steps necessary for the determination of enzyme activity and interpretation of results. Each methodology is illustrated with photos and schemes for a better and clear understanding. This book, therefore, uniquely brings modern analysis techniques of industrial enzymes in a single easy to understand volume. This textbook is suitable for undergraduate enzymology courses and advanced industrial biotechnology and microbiology courses.
Methods of Enzymatic Analysis, Volume 2 reviews developments in the determination of enzyme activity, including advances in assay techniques. It discusses the principles on which measurements of enzymes are based, with each chapter including equations and each method consisting of the pipetting protocol. This volume is divided into four parts, each discussing a group of enzymes and their determination. Part I focuses on oxidoreductases, such as sorbitol dehydrogenase, lactate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, 6-phosphogluconate dehydrogenase, xanthine oxidase, and glutamate dehydrogenase. Part II is concerned with transferases ranging from ornithine carbamoyltransferase and transamidinase to transketolase, transaldolase, UDP-glucuronyltransferase, glutamate-pyruvate transaminase, and phosphotransferases. Part III discusses hydrolases including esterases, glycoside hydrolases, peptidases, and proteinases, whereas Part IV looks at lyases, isomerases, and ligases, such as fructose-1, 6-diphosphate aldolase, 1-phosphofructoaldolase, glucosephosphate isomerase, and tetrahydrofolate formylase. This book is a valuable resource for biochemists as well as students and researchers working in the field of analytical biochemistry.
Now in full color for a more intuitive learning experience, this new edition of the long-selling reference also features a number of new developments in methodology and the application of enzyme kinetics. Starting with a description of ligand binding equilibria, the experienced author goes on to discuss simple and complex enzyme reactions in kinetic terms. Special cases such as membrane-bound and immobilized enzymes are considered, as is the influence of external conditions, such as temperature and pH value. The final part of the book then covers a range of widely used measurement methods and compares their performance and scope of application. With its unique mix of theory and practical advice, this is an invaluable aid for teaching as well as for experimental work.
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series
The use of High Performance Liquid Chromatography (HPLC) techniques in the study of enzymatic reactions has grown significantly since the publication of the first edition of this highly successful book: the role of enzymes in biological research has expanded; the application of HPLC and enzymes has extended to more disciplines; advances in separation techniques and instrumentation have increased the capability of HPLC; and the discovery of new enzymes has spawned new methods of analysis. High Performance Liquid Chromatography in Enzymatic Analysis, Second Edition addresses these developments in its coverage of the refinements of HPLC methods and their use in a wide range of laboratory applications. It offers the same practical approach found in the first edition, incorporates a wealth of new information into existing chapters, and adds new chapters to deal with new applications, including capillary electrophoresis, forensic chemistry, microdialysis, and the polymerase chain reaction. Topics include: * Application of HPLC to the assay of enzymatic activities * Concepts and principles of HPLC, including the latest technological advances * Concepts and principles of capillary electrophoresis (CE) * Strategy for design of an HPLC/CE system for assay of enzyme activity * Preparation of enzymatic activities from tissues and single cells * Analysis of enzymatic activities in body fluids, including chromatobiosis * HPLC for the identification of new enzymatic activities * Fundamentals of the polymerase chain reaction * HPLC in forensics * Survey of enzymatic activities assayed by the HPLC method, including many new categories * Multienzyme systems, including many new examples * HPLC in the analysis of contaminated food "It is the ability of HPLC to accomplish separations completely and rapidly that led to its original application to problems in the life sciences, particularly those related to purification. An analysis of the literature revealed that this technique was used primarily for the purification of small molecules, macromolecules such as peptides and proteins, and more recently, antibodies. This application to purification has all but dominated the use of the method, and there has been a plethora of books, symposia, and conferences on the use of HPLC for these purposes. However, it was only a matter of time before others began to look beyond and to explore the possibilities that result from the capacity to make separations quickly and efficiently." --from the preface to the First Edition Easy to read and full of practical advice and hundreds of diagrams and examples, High Performance Liquid Chromatography in Enzymatic Analysis, Second Edition is an invaluable resource for students, researchers, and laboratory workers in analytical chemistry and biochemistry, molecular biology and cell biology, and for anyone interested in keeping up with this fast-growing field.
Guide to Protein Purification, Second Edition provides a complete update to existing methods in the field, reflecting the enormous advances made in the last two decades. In particular, proteomics, mass spectrometry, and DNA technology have revolutionized the field since the first edition’s publication but through all of the advancements, the purification of proteins is still an indispensable first step in understanding their function. This volume examines the most reliable, robust methods for researchers in biochemistry, molecular and cell biology, genetics, pharmacology and biotechnology and sets a standard for best practices in the field. It relates how these traditional and new cutting-edge methods connect to the explosive advancements in the field. This "Guide to" gives imminently practical advice to avoid costly mistakes in choosing a method and brings in perspective from the premier researchers while presents a comprehensive overview of the field today. Gathers top global authors from industry, medicine, and research fields across a wide variety of disciplines, including biochemistry, genetics, oncology, pharmacology, dermatology and immunology Assembles chapters on both common and less common relevant techniques Provides robust methods as well as an analysis of the advancements in the field that, for an individual investigator, can be a demanding and time-consuming process
Exploring the theories, methodologies and applications in simulations of enzymatic reactions, this book is a great resource for postgraduate students and researchers.