Download Free Envisioning The Future Of Industrial Bioprocesses Through Biorefinery Book in PDF and EPUB Free Download. You can read online Envisioning The Future Of Industrial Bioprocesses Through Biorefinery and write the review.

This book introduces the innovative and emerging microbial technologies for the treatment, recycling, and management of industrial, domestic, and municipal water and other wastewater in an environment-friendly and cost-effective manner. It discusses existing methods and technologies, up-gradation of existing technologies, and new technologies. It also highlights opportunities in the existing technologies along with industrial practices and real-life case studies.
Petroleum-based industrial products have gradually replaced products derived from biological materials. However, biologically based products are making a comebackâ€"because of a threefold increase in farm productivity and new technologies. Biobased Industrial Products envisions a biobased industrial future, where starch will be used to make biopolymers and vegetable oils will become a routine component in lubricants and detergents. Biobased Industrial Products overviews the U.S. land resources available for agricultural production, summarizes plant materials currently produced, and describes prospects for increasing varieties and yields. The committee discusses the concept of the biorefinery and outlines proven and potential thermal, mechanical, and chemical technologies for conversion of natural resources to industrial applications. The committee also illustrates the developmental dynamics of biobased products through existing examples, as well as products still on the drawing board, and it identifies priorities for research and development.
Food and Industrial Bioproducts and Bioprocessing describes the engineering aspects of bioprocessing, including advanced food processing techniques and bioproduct development. The main focus of the book is on food applications, while numerous industrial applications are highlighted as well. The editors and authors, all experts in various bioprocessing fields, cover the latest developments in the industry and provide perspective on new and potential products and processes. Challenges and opportunities facing the bioproduct manufacturing industry are also discussed. Coverage is far-reaching and includes: current and future biomass sources and bioprocesses; oilseed processing and refining; starch and protein processing; non-thermal food processing; fermentation; extraction techniques; enzymatic conversions; nanotechnology; microencapsulation and emulsion techniques; bioproducts from fungi and algae; biopolymers; and biodegradable/edible packaging. Researchers and product developers in food science, agriculture, engineering, bioprocessing and bioproduct development will find Food and Industrial Bioproducts and Bioprocessing an invaluable resource.
Waste Biorefinery: Potential and Perspectives offers data-based information on the most cutting-edge processes for the utilisation of biogenic waste to produce biofuels, energy products, and biochemicals – a critical aspect of biorefinery. The book explores recent developments in biochemical and thermo-chemical methods of conversion and the potential generated by different kinds of biomass in more decentralized biorefineries. Additionally, the book discusses the move from 200 years of raw fossil materials to renewable resources and how this shift is accompanied by fundamental changes in industrial manufacturing technologies (from chemistry to biochemistry) and in logistics and manufacturing concepts (from petrochemical refineries to biorefineries). Waste Biorefinery: Potential and Perspectives designs concepts that enable modern biorefineries to utilize all types of biogenic wastes, and to integrate processes that convert byproduct streams to high-value products, achieving higher cost benefits. This book is an essential resource for researchers and students studying biomass, biorefineries, and biofuels/products/processes, as well as chemists, biochemical/chemical engineers, microbiologists, and biotechnologists working in industries and government agencies. - Details the most advanced and innovative methods for biomass conversion - Covers biochemical and thermo-chemical processes as well as product development - Discusses the integration of technologies to produce bio-fuels, energy products, and biochemicals - Illustrates specific applications in numerous case studies for reference and teaching purposes
Food Industry Wastes: Assessment and Recuperation of Commodities, Second Edition presents a multidisciplinary view of the latest scientific and economic approaches to food waste management, novel technologies and treatment, their evaluation and assessment. It evaluates and synthesizes knowledge in the areas of food waste management, processing technologies, environmental assessment, and wastewater cleaning. Containing numerous case studies, this book presents food waste valorization via emerging chemical, physical, and biological methods developed for treatment and product recovery.This new edition addresses not only recycling trends but also innovative strategies for food waste prevention. The economic assessments of food waste prevention efforts in different countries are also explored. This book illustrates the emerging environmental technologies that are suitable for the development of both sustainability of the food systems and a sustainable economy. So, this volume is a valuable resource for students and professionals including food scientists, bio/process engineers, waste managers, environmental scientists, policymakers, and food chain supervisors. - Provides guidance on current regulations for food process waste and disposal practices - Highlights novel developments needed in policy making for the reduction of food waste - Raises awareness of the sustainable food waste management techniques and their appraisal through - Life Cycle Assessment Explores options for reducing food loss and waste along the entire food supply chain
Microalgae Cultivation for Biofuels Production explores the technological opportunities and challenges involved in producing economically competitive algal-derived biofuel. The book discusses efficient methods for cultivation, improvement of harvesting and lipid extraction techniques, optimization of conversion/production processes of fuels and co-products, the integration of microalgae biorefineries to several industries, environmental resilience by microalgae, and a techno-economic and lifecycle analysis of the production chain to gain maximum benefits from microalgae biorefineries. - Provides an overview of the whole production chain of microalgal biofuels and other bioproducts - Presents an analysis of the economic and sustainability aspects of the production chain - Examines the integration of microalgae biorefineries into several industries
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Today's petrochemical industry is an amazing model of production efficiency, taking crude oil and supplying thousands of discrete chemicals and materials from just seven primary building blocks. Renewable raw materials offer a new set of primary building blocks including carbohydrates in the form of cellulose, starch, homicellulose, and monomeric sugars, aromatics in the form of lignin, hydrocarbons in the form of fatty acids and polyols in the form of glycerol. Yet chemical production today is overwhelmingly dominated by crude oil, principally because conversion technology for renewables still lags far behind that available for nonrenewables. Technology is needed that will lead to renewables based chemical processes that rival or exceed the diversity and efficiency of today's chemical industry. The cellulose and Renewable Materials division (CELL) of American Chemical Society offered a forum for this topic Feedstocks for the Future: Renewables for the production of Chemical and Materials, at the national ACS meeting in Anaheim, CA, March 28-April 1, 2004. This symposium included discussions of emerging conversion technologies for renewable building blocks, new mechanistic understanding of these conversion processes, development of new catalytic processes tailored for renewables, life cycle and process analysis for renewables, and identification of new structures that could serve as platforms for renewables-based product families. The book is intended to have a strong emphasis on organic chemistry, mechanism, and structure, and novel synthesis and production of chemicals, polymers and materials. More specifically, the reader will find information in the following areas: 1) new transformations of carbohydrates to chemicals and polymers 2) novel oleochemical processes; new uses of glycerol and fatty acids 3) transition metal catalyzed transformations of carbohydrates, lignin, fatty acids, glycerol, etc. 4) economic, environmental, and life cycle analysis of chemicals derived from renewables 5) production of new polymeric materials from renewables 6) new biocatalytic transformations of renewable building blocks 7) industrial uses of renewables and renewables based building blocks