Download Free Environmental Xenobiotics Book in PDF and EPUB Free Download. You can read online Environmental Xenobiotics and write the review.

This book describes the vast variety of xenobiotics, such as pesticides, antibiotics, antibiotic resistance genes, agrochemicals and other pollutants, their interactions with the soil environment, and the currently available strategies and techniques for soil decontamination and bioremediation. Topics covered include: transport mechanisms of pollutants along the Himalayas; use of earthworms in biomonitoring; metagenomic strategies for assessing contaminated sites; xenobiotics in the food chain; phyto-chemical remediation; biodegradation by fungi; and the use of enzymes and potential microbes in biotransformation. Accordingly, the book offers a valuable guide for scientists in the fields of environmental ecology, soil and food sciences, agriculture, and applied microbiology.
The effects of man-made substances (xenobiotics) on the natural environment are described in this volume. It explains why these effects need to be understood, monitored and curtailed, especially in developing countries.
This book is compilation of studies related with the xenobiotics i.e. chemical or other substance that is not normally found in the ecosystems and get accumulated at higher concentration in the biological system due to rampant industrialisation and urbanisation activities. This book has tried to give information on various issues to give comprehensive and concise knowledge of the recent advancement in the field of environmental xenobiotics and how it disturbs the plants metabolism. Other key features of the book are related to xenobiotic toxicity and detoxification mechanism, biochemical tools toward its remediation processes, molecular mechanism for xenobiotics detoxification and effect on metallomics. It also focuses on recent development in the field of waste water remediation concerned with the xenobiotics involvement. This book is different in such a way that it includes all the initial information along with the new researches. It includes the description of problem along with its solution. This volume describe the effects of xenobiotics at different levels i.e. biochemical, physiological and molecular, giving the details on signaling pathways to modify the responses of xenobiotics in plant system. Thus, it gives confirming crosstalk between xenobiotic effects and signalling pathways. This book includes description about both the organic contaminants such as pesticides, solvents and petroleum products as well as inorganic xenobiotics that include heavy metals, non-metals, metalloids, and simple soluble salts. Here the plant is main objective and that have to deal with these kinds of compounds either by avoiding accumulation of these compounds or by exhibiting several enzymatic reactions for detoxification including oxidation, reduction, and conjugation reactions. Affected plants exhibit several enzymatic and non-enzymatic antioxidant and other reactions for detoxification of ROS including oxidation, reduction, hydrolysis and conjugation reactions. The book focuses on different forms and sources of xenobiotics including organic and inorganic xenobiotics. The matter of this book will definitely increase the knowledge about the impacts of xenobiotics on plants system. There must be potentially broad readership who could find this fruitful for their study as well as for their research. As this book has balance between basic plant physiology and toxicity caused by the xenobiotics so it can be widely used in several disciplines. Overall, the book will bring deep knowledge in the field of xenobiotics toxicity in plants during recent years and it is definitely a compilation of interesting information which isn't fully covered elsewhere in the current market.
Our interest in the microbial biodegradation of xenobiotics has increased many folds in recent years to find out sustainable ways for environmental cleanup. Bioremediation and biotransformation processes harness the naturally occurring ability of microbes to degrade, transform or accumulate a wide range of organic pollutants. Major methodological breakthroughs in recent years through detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms have provided us unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The degradation of a wide spectrum of organic pollutants and wastes discharged into the environment by anthropogenic activities is an emerging need today to promote sustainable development of our society with low environmental impact. Microbial processes play a major role in the removal of recalcitrant compounds taking advantage of the astonishing catabolic versatility of microorganisms to degrade or transform such compounds. New breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are generating vital information which opens a new era providing new insights of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds. New approaches will certainly accelerate the development of bioremediation technologies and biotransformation processes in coming years for natural attenuation of contaminated environments
With focus on the practical use of modern biotechnology for environmental sustainability, this book provides a thoughtful overview of molecular aspects of environmental studies to create a new awareness of fundamental biological processes and sustainable ecological concerns. It covers the latest research by prominent scientists in modern biology and delineates recent and prospective applications in the sub-areas of environmental biotechnology with special focus on the biodegradation of toxic pollutants, bioremediation of contaminated environments, and bioconversion of organic wastes toward a green economy and sustainable future.
The general populations are incidentally exposed to a wide variety of xenobiotics as a consequence of the pollution of the environment by industrial and agricultural chemicals. Xenobiotics entering the animal will undergo one or more of the following fate: (a) elimination unchanged, (b) metabolism by enzymes, (c) spontaneous chemical transformation and (d) remain unchanged in the body. The actions of xenobiotics on the body exhibit certain specificity depending upon the compound's chemical structure and reactivity. Since the processes of metabolism change these chemical properties ofaxenobiotic, bewildering number of reactions continue to pose new challenges to toxicologists and pharmacologists. It necessitates periodic and precise revision of the subject. This book contains invited contributions from learned colleagues that offer an excellent survey of and profound insight into the disposition and metabolism of a few environmentally and industrially significant xenobiotics. The topics range from an assessment of drug metabolising enzymes in the liver, DNA damage by reactive oxygen species generated by pesticides, role of NO in liver injury, hepatotrophicgrowth factor in liver regeneration, extracellular matrix in the liver, oncogene expression in liver injury, the hepatocarcinogenesis to oxidative stress and undifferentiated gene expression. Detailed analysis of the validity of liver function tests has been included. Last Chapter addresses the problem of apoptosis, which plays a key role in the signal transduction system of xenobiotics-induced liver injury. The reader should appreciate that overall exposure to this field is expanding at a rapid pace and selections had to be made.
The book you are just going to read represents the greater part of the papers presented at the International Conference on Industrial and En vironmental Xenobiotics, held in Prague, 1980, and some contributions by those who could not come. The first aim of the meeting was to fol low the tradition set up by the first conference in 1977. Again, we in vited biochemists, pharmacologists, and toxicologists from both East and West, who were involved in the study of disposition, biotransforma tion, and toxicity of important kinds of industrial and environmental pollutants, to promote the exchange of ideas and opinions on priorities in this area of the study of human environment. The invited contributions offer an excellent survey of and pro found insight into specific areas of toxicology and disposition of metals and organic chemicals, and the series of papers on specific subjects bring fresh information on the biotransformation and mechanisms of toxic action of several industrially important solvents tmd monomers of plastics. Rather than from the Preface, the reader should seek guidance from the Index, which clearly shows the overlapping of this area of toxicology with the latest results in biochemistry. We gratefully acknowledge the understanding, care, and preciSion of the publisher that made this book possible. The Editors Contents Metals Metabolic Factors in the Distribution and Half Time of Mercury After Exposure to Different Mercurials 1. Magos. With 1 Figure . . . . . . . . . . . . . . . . . . .. . . . 1 . . . . . Biliary Excretion of Metals M. Cikrt. With 9 Figures. . . . . . . . . . . . . . . . . . . .. . . 17 . . . . .
A practice-oriented desktop reference for medical professionals, toxicologists and pharmaceutical researchers, this handbook provides systematic coverage of the metabolic pathways of all major classes of xenobiotics in the human body. The first part comprehensively reviews the main enzyme systems involved in biotransformation and how they are orchestrated in the body, while parts two to four cover the three main classes of xenobiotics: drugs, natural products, environmental pollutants. The part on drugs includes more than 300 substances from five major therapeutic groups (central nervous system, cardiovascular system, cancer, infection, and pain) as well as most drugs of abuse including nicotine, alcohol and "designer" drugs. Selected, well-documented case studies from the most important xenobiotics classes illustrate general principles of metabolism, making this equally useful for teaching courses on pharmacology, drug metabolism or molecular toxicology. Of particular interest, and unique to this volume is the inclusion of a wide range of additional xenobiotic compounds, including food supplements, herbal preparations, and agrochemicals.
This comprehensive encyclopedic reference provides rapid access to focused information on topics of cancer research for clinicians, research scientists and advanced students. Given the overwhelming success of the first edition, which appeared in 2001, and fast development in the different fields of cancer research, it has been decided to publish a second fully revised and expanded edition. With an A-Z format of over 7,000 entries, more than 1,000 contributing authors provide a complete reference to cancer. The merging of different basic and clinical scientific disciplines towards the common goal of fighting cancer makes such a comprehensive reference source all the more timely.
One of the very few - if not only - books written exclusively related to this topic. This book comprehensively outlines the principles governing the accumulation of chemicals from the environment by organisms. Packed with tables and diagrams, this work reviews the experimental data available on both terrestrial and aquatic systems. It describes methods which are used to predict bioaccumulation of chemicals from their physicochemical properties. It also reviews environmental and other factors influencing bioaccumulation. This text also includes previously unpublished theoretical explanations of several bioaccumulation processes, including food chain biomagnification. Information in this exceptional volume is useful to government officials involved with environmental management, chemists, biologists, consultants working with chemical waste control, researchers, and graduate students.