Download Free Environmental Radiobiology Book in PDF and EPUB Free Download. You can read online Environmental Radiobiology and write the review.

This book focuses on the impacts of anthropogenic radiation on wildlife and ecosystems and provides an in-depth look at the approaches and available tools we can use to gain information about biological effects of radiation in the environment. The nuclear accidents in Chornobyl in 1986 and Fukushima in 2011 focussed the attention of the world on the vulnerability of ecosystems to radiation. In Chornobyl, there still remains an exclusion zone where levels are considered to be too high for people and impacts on terrestrial and aquatic ecosystems can still be measured 35 years later. In the area impacted by the Fukushima disaster, intense remediation is still under way at tremendous cost and causing widespread disruption to the environment. That accident impacted the terrestrial and marine ecosystems. In both accidents it became obvious that a radiation protection framework focussing on protection of “humans” (a single species) and using evacuation as a key strategy, was not sufficient to protect the natural environment. The complexity of ecosystems makes developing a protection framework very challenging but in order to even start the process it is vital to gather information about likely impacts of low dose exposures on wildlife and to develop monitoring tools to measure changes over time. This book contains reviews and original research aimed at filling our knowledge gaps about these important areas. Environmental Radiobiology will be a key resource for academics, researchers, and advanced students of Radiobiology, Radioecology, Biology, Ecology, Biomedicine and Research Methods. The chapters included in this book were originally published as a special issue of International Journal of Radiation Biology.
An overview of the sources, uses and effects of ionising radiation in the environment and their consequences for life.
This volume – like the NATO Advanced Research Workshop on which it is based – addresses the fundamental science that contributes to our understanding of the potential risks from ecological terrorism, i.e. dirty bombs, atomic explosions, intentional release of radionuclides into water or air. Both effects on human health (DNA and systemic effects) and on ecosystems are detailed, with particular focus on environmentally relevant low-dose ranges. The state-of-the-art contributions to the book are authored by leading experts; they tackle the relevant questions from the perspectives of radiation genetics, radiobiology, radioecology, radiation epidemiology and risk assessment.
This volume – like the NATO Advanced Research Workshop on which it is based – addresses the fundamental science that contributes to our understanding of the potential risks from ecological terrorism, i.e. dirty bombs, atomic explosions, intentional release of radionuclides into water or air. Both effects on human health (DNA and systemic effects) and on ecosystems are detailed, with particular focus on environmentally relevant low-dose ranges. The state-of-the-art contributions to the book are authored by leading experts; they tackle the relevant questions from the perspectives of radiation genetics, radiobiology, radioecology, radiation epidemiology and risk assessment.
Environmental Radioactivity from Natural, Industrial, and Military Sources is the comprehensive source of information on radiation in the environment and human exposure to radioactivity. This Fourth Edition isa complete revision and extension of the classic work, reflecting major new developments and concerns as the Cold War ended, nuclear weapons began to be dismantled, and cleanup of the nuclear weapons facilities assumed center stage. Contamination from accidents involving weapons, reactors, and radionuclide sources are discussed in an updated chapter, including the latest information about the effects of the Chernobyl accident. Important revisions are also made to the chapters on natural radioactivity, nuclear fuels and power reactors, radioactive waste management, and various other sources of exposure. Several chapters provide primers for readers who may not be familiar with the fundamentals of radiation biology, protection standards, and pathways for the environmental transport of radionuclides. An Appendix lists the properties of the more important radionuclides found in the environment. The book concludes with a commentary on contemporary social aspects of radiation exposure and risks that offers analternative view to current, often excessive concerns over radiation, nuclear technology, and waste. Describes every important source of environmental radioactivity Reviews the vexing problems of radioactive waste management and clean-up of contaminated sites Contains measured or projected radiation dose estimates for the major sources Features 126 figures, 80 tables, and more than 1200 references Discusses current problems in historical context The two authors bring more than 75 years of combined experience with environmental radioactivity Provides an understanding of the sources of environmental radioactivity and human exposure from the mining of ores to final disposal of wastes Thoroughly reviews important contamination accidents
This proceedings volume results from the NATO Advanced Research Workshop on 'Biomarkers of Radiation in the Environment: Robust Tools for Risk Assessment (BRITE)’. The BRITE workshop discussed insights from cancer research, epigenetics, non-human and human risk assessment, since many of the state-of-the-art biomarkers being developed for humans deserve consideration for environmental applications and vice versa. Sessions were very wide-ranging covering methods, mechanisms, cross disciplinary application and regulation. The chapters in this book have been grouped into five major themes that were covered by the BRITE workshop: · Techniques for biomarker development · Low-dose effect mechanisms · Biomarkers for risk evaluation · Biomarkers in wildlife · Biomarker use and responses Each chapter has been written independently and reflects the views of the chapter author(s). Therefore, the readers can form their own balanced view of the different perspectives on biomarkers of radiation in the environment. Given the breadth of topics covered and the state-of-the-art perspectives shared by leading experts in their respective fields, this book should form a valuable resource for anyone with an interest in how biomarkers can be used to improve our understanding of radiation in the environment and its potential impacts.