Download Free Environmental Genomics And Epigenomics Response Development And Disease Book in PDF and EPUB Free Download. You can read online Environmental Genomics And Epigenomics Response Development And Disease and write the review.

This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.
Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. - Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases - Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA - Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases
This landmark publication provides the first definitive account of how and why subtle influences on the fetus and during early life can have such profound consequences for adult health and diseases. Although the epidemiological evidence for this link has long proved compelling, it is only much more recently that the scientific and physiological basis has begun to be studied in depth and fully understood. The compilation, written by many of the world's leading experts in this exciting field, summarizes these scientific and clinical advances.
Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.
Adolescenceâ€"beginning with the onset of puberty and ending in the mid-20sâ€"is a critical period of development during which key areas of the brain mature and develop. These changes in brain structure, function, and connectivity mark adolescence as a period of opportunity to discover new vistas, to form relationships with peers and adults, and to explore one's developing identity. It is also a period of resilience that can ameliorate childhood setbacks and set the stage for a thriving trajectory over the life course. Because adolescents comprise nearly one-fourth of the entire U.S. population, the nation needs policies and practices that will better leverage these developmental opportunities to harness the promise of adolescenceâ€"rather than focusing myopically on containing its risks. This report examines the neurobiological and socio-behavioral science of adolescent development and outlines how this knowledge can be applied, both to promote adolescent well-being, resilience, and development, and to rectify structural barriers and inequalities in opportunity, enabling all adolescents to flourish.
Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs
Epigenetic Gene Expression and Regulation reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies. The book shows how these heritable mechanisms allow individual cells to establish stable and unique patterns of gene expression that can be passed through cell divisions without DNA mutations, thereby establishing how different heritable patterns of gene regulation control cell differentiation and organogenesis, resulting in a distinct human organism with a variety of differing cellular functions and tissues. The work begins with basic biology, encompasses methods, cellular and tissue organization, topical issues in epigenetic evolution and environmental epigenesis, and lastly clinical disease discovery and treatment. Each highly illustrated chapter is organized to briefly summarize current research, provide appropriate pedagogical guidance, pertinent methods, relevant model organisms, and clinical examples. - Reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies - Helps readers understand how epigenetic marks are targeted, and to what extent transgenerational epigenetic changes are instilled and possibly passed onto offspring - Chapters are replete with clinical examples to empower the basic biology with translational significance - Offers more than 100 illustrations to distill key concepts and decipher complex science
The exploding field of epigenetics is challenging the dogma of traditional Mendelian inheritance. Epigenetics plays an important role in shaping who we are and contributes to our prospects of health and disease. While early epigenetic research focused on plant and animal models and in vitro experiments, population-based epidemiologic studies increasingly incorporate epigenetic components. The relevance of epigenetic marks, such as DNA methylation, genomic imprinting, and histone modification for disease causation has yet to be fully explored.This book covers the basic concepts of epigenetic epidemiology, discusses challenges in study design, analysis, and interpretation, epigenetic laboratory techniques, the influence of age and environmental factors on shaping the epigenome, the role of epigenetics in the developmental origins hypothesis, and provides the state of the art on the epigenetic epidemiology of various health conditions including childhood syndromes, cancer, infectious diseases, inflammation and rheumatoid arthritis, asthma, autism and other neurodevelopmental disorders, psychiatric disorders, diabetes, obesity and metabolic disorders, and atherosclerosis. With contributions from: Peter Jones, Jean-Pierre Issa, Gavin Kelsey, Robert Waterland, and many other experts in epigenetics!
The regulation of gene expression in many biological processes involves epigenetic mechanisms. In this new volume, 24 chapters written by experts in the field discuss epigenetic effects from many perspectives. There are chapters on the basic molecular mechanisms underpinning epigenetic regulation, discussion of cellular processes that rely on this kind of regulation, and surveys of organisms in which it has been most studied. Thus, there are chapters on histone and DNA methylation, siRNAs and gene silencing; X-chromosome inactivation, dosage compensation and imprinting; and discussion of epigenetics in microbes, plants, insects, and mammals. The last part of the book looks at how epigenetic mechanisms act in cell division and differentiation, and how errors in these pathways contribute to cancer and other human diseases. Also discussed are consequences of epigenetics in attempts to clone animals. This book is a major resource for those working in the field, as well as being a suitable text for advanced undergraduate and graduate courses on gene regulation.