Download Free Environmental Aspects Of Iron And Steel Production Book in PDF and EPUB Free Download. You can read online Environmental Aspects Of Iron And Steel Production and write the review.

This reference work analyzes and assesses global environmental management techniques for environmental materials with a focus on their performance and economic benefits, proposing eco-friendly solutions and designating policies that will sustain the environment for future generations. It addresses management of environmental materials as not only a complex anthropogenic problem, but also as an expensive problem that needs to be managed sustainably. Simultaneously, it considers the environmental and economic benefits involved in the high levels of investment and operation costs required to develop effective materials collection and management systems in modern society.
Iron Ore: Mineralogy, Processing and Environmental Sustainability, Second Edition covers all aspects surrounding the second most important commodity behind oil. As an essential input for the production of crude steel, iron ore feeds the world's largest trillion-dollar-a-year metal market and is the backbone of the global infrastructure. The book explores new ore types and the development of more efficient processes/technologies to minimize environmental footprints. This new edition includes all new case studies and technologies, along with new chapters on the chemical analysis of iron ore, thermal and dry beneficiation of iron ore, and discussions of alternative iron making technologies. In addition, information on recycling solid wastes and P-bearing slag generated in steel mills, sustainable mining, and low emission iron making technologies from regional perspectives, particularly Europe and Japan, are included. This work will be a valuable resource for anyone involved in the iron ore industry. - Provides an overall view of the entire value chain, from iron ore to metal - Includes specific information on process/stage/operation in the value chain - Discusses challenges and developments, along with future trends in the iron ore and steel industries - Incorporates new, sustainable mining techniques
Environmental policy aims at the transition to sustainable production and consumption. This is taking place in different ways and at different levels. In cases where businesses are continuously active to improve the environmental performance of their products and activities, the availability of knowledge on environmental impacts is indispensable. The integrated assessment of all environmental impacts from cradle to grave is the basis for many decisions relating to achieving improved products and services. The assessment tool most widely used for this is the environmental Life Cycle Assessment, or LCA. Before you is the new Handbook of LCA replacing the previous edition of 1992. New developments in LCA methodology from all over the world have been discussed and, where possible, included in this new Handbook. Integration of all developments into a new, consistent method has been the main aim for the new Handbook. The thinking on environment and sustainability is, however, quickly evolving so that it is already clear now that this new LCA Handbook does not embrace the very latest developments. Therefore, further revisions will have to take place in the future. A major advantage of this Handbook is that it now also advises which procedures should be followed to achieve adequate, relevant and accepted results. Furthermore, the distinction between detailed and simplified LCA makes this Handbook more broadly applicable, while guidance is provided as to which additional information can be relevant for specialised applications.
This book focuses on the engineering aspects of phosphorus (P) recovery and recycling, presenting recent research advances and applications of technologies in this important and challenging area of engineering. It highlights full-scale applications to illustrate the performance and effectiveness of the new technologies. As an essential element for all living organisms, P cannot be replaced by any other element in biochemical processes, humans ultimately rely its availability. Today, P is mostly obtained from mined rock phosphate (Pi). However, natural reserves of high-grade rock Pi are limited and dwindling on a global scale. As such, there have been increased efforts to recycle P from secondary sources, including sewage sludge, animal manure, food waste, and steelmaking slag, and so close the anthropogenic P cycle. In addition to various aspects of phosphorus covered by other literature, including chemistry, biochemistry, ecology, soil-plant systems and sustainable management, this book is a valuable and comprehensive source of information on the rapidly evolving field of P recovery and recycling engineering for students, researchers, and professionals responsible for sustainable use of phosphorus.
Separation processes—or processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.
This book offers a detailed presentation of the principles and practice of life cycle impact assessment. As a volume of the LCA compendium, the book is structured according to the LCIA framework developed by the International Organisation for Standardisation (ISO)passing through the phases of definition or selection of impact categories, category indicators and characterisation models (Classification): calculation of category indicator results (Characterisation); calculating the magnitude of category indicator results relative to reference information (Normalisation); and converting indicator results of different impact categories by using numerical factors based on value-choices (Weighting). Chapter one offers a historical overview of the development of life cycle impact assessment and presents the boundary conditions and the general principles and constraints of characterisation modelling in LCA. The second chapter outlines the considerations underlying the selection of impact categories and the classification or assignment of inventory flows into these categories. Chapters three through thirteen exploreall the impact categories that are commonly included in LCIA, discussing the characteristics of each followed by a review of midpoint and endpoint characterisation methods, metrics, uncertainties and new developments, and a discussion of research needs. Chapter-length treatment is accorded to Climate Change; Stratospheric Ozone Depletion; Human Toxicity; Particulate Matter Formation; Photochemical Ozone Formation; Ecotoxicity; Acidification; Eutrophication; Land Use; Water Use; and Abiotic Resource Use. The final two chapters map out the optional LCIA steps of Normalisation and Weighting.
This book presents the fundamentals of iron and steel making, including the physical chemistry, thermodynamics and key concepts, while also discussing associated problems and solutions. It guides the reader through the production process from start to finish, covers the raw materials, and addresses the types of processes and reactions involved in both conventional and alternative methods. Though primarily intended as a textbook for students of metallurgical engineering, the book will also prove a useful reference for professionals and researchers working in this area.
An impressive set of books on the Industrial Revolution, these comprehensive volumes cover the history of steam shipping, iron and steel production, and railroads--three interrelated enterprises that helped shift the Industrial Revolution into overdrive. The first set of volumes in ABC-CLIO's breakthrough Industrial Revolution in America series features separate histories of three closely related industries whose maturation fueled the Industrial Revolution in the United States during the late 19th and 20th centuries, fundamentally changing the way Americans lived their lives. With this set, students will learn how the steamship--the first great American contribution to the world's technology--helped turn the nation's waterways into a forerunner of our superhighways; how the Andrew Carnegie-led American steel industry surpassed its British rivals, marking a momentous power shift among industrialized nations; and how the railroads, spurred by some of the United States's most dynamic entrepreneurs (Cornelius Vanderbilt, John Pierpont Morgan, Jay Gould), moved from a single transcontinental link to become the most influential and far-reaching technological innovation of the Industrial Age, extending into virtually every facet of American culture and commerce. Sidebars--many featuring primary documents--include topics such as Mark Twain's days as a river pilot, Andrew Carnegie's libraries, and the impact of railroads on immigration, giving students fascinating insights into key issues and figures Includes in-depth biographical profiles and a comprehensive index of people, places, and key terms for easy access to information on specific topics