Download Free Environmental Applications Of Nanomaterials Book in PDF and EPUB Free Download. You can read online Environmental Applications Of Nanomaterials and write the review.

Explore the Properties of Today's Widely Used Nanomaterials— and Assess Their Potentially Harmful Effects on the Environment Environmental Nanotechnology is the first book to assist you in both understanding the properties of new nanomaterial-centered technology and assessing the potentially harmful effects these materials may have on the environment. Written by a team of 29 leading experts from around the world, this comprehensive book presents cutting-edge coverage of the fabrication, characterization, and measurement of nanomaterials...emerging markets for nanomaterials...nanotechnologies in the energy industry...nanotechnologies for environmental quality...nanotechnology transport and fate in the environment...toxicological impacts of nanomaterials...and much more. Filled with detailed illustrations, Environmental Nanotechnology features: State-of-the-art techniques for the characterization and measurement of nanomaterials The latest findings on the transport and fate of nanomaterials in the environment Nanotechnologies for energy production, storage, and distribution In-depth analyses of the ecotoxicological impacts of nanomaterials New methods for developing nanomaterials with less environmental risk Inside This Landmark Environmental Engineering Guide _ • Nanomaterials: New Challenges and Opportunities • Fabrication of Nanomaterials • Characterization and Measurement of Nanomaterials • Emerging Markets for Nanomaterials • Nanomaterial-Enabled Technologies for Energy Production, Storage, and Distribution • Nanomaterial-Enabled Technologies for Environmental Quality • Nanomaterial Transport and Fate in the Environment • Ecotoxicological Impacts of Nanomaterials • Toxicological Impacts of Nanomaterials
Environmental devices help in monitoring the collection of one or more measurements that are used to access the status of an environment. Today, environmental monitoring and analytical methods are among the most rapidly developing branches of analysis. The functionalization of nanomaterials in the field of environmental science has increasing importance with regards to the fabrication of devices. Functionalized nanomaterials reformulate new materials and advanced characteristics for improved application in comparison to old fashion materials and open an opportunity for the development of devices for introducing new technology and techniques for monitoring environmental challenges. The monitoring of these environmental challenges in advances have direct impact on health and sustainability. Functionalized nanomaterials have different mechanical, absorption, optical or electrical properties than original nanomaterials. In fact, major utilization of nanomaterials occurs in their functionalized forms, which are very different from the parent material. This handbook provides an overview of the different state-of-the-art materials, devices and environmental applications of functionalized nanomaterials. In addition, the information offers a platform for ongoing research in the field of environmental science and device fabrication. The main objective of this book is to cover the major areas focusing on the functionalization of nanomaterials, device fabrication along with different techniques and environmental applications of functionalized nanomaterials-based devices. This is an important reference source for materials scientists, engineers and environmental scientsts who are looking to increase their understanding of how functionalized nanomaterial-based devices are being used for environmental monitoring applications. Helps the reader to understand the basic principles of functionalization of nanomaterials Highlights fabrication and characterization methods for functionalized nanomaterials-based environmental monitoring devices Assesses the major challenges of creating devices using functionalized nanomaterials on a mass scale
This book contains an overview of novel synthesis, characterization, and applications of nanomaterials. Based on an extensive state-of-the-art literature survey and the results obtained by researchers during the past years, this book presents techniques and special applications of classical and modern nanomaterials focus on environmental remediation and preservation. It summarizes up-to-date synthesis and characterization of diverse materials applied to the modern environment concerns such as zero-valent iron soil remediation, photochromic materials for water treatment, carbon nanotubes for gas sensing, photocatalysis, among others. This book is aimed at students, researchers, and engineers who seek general scientific knowledge about nanomaterials with an application-oriented approach.
Nanotechnology and Photocatalysis for Environmental Applications focuses on nanostructured control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of semiconductor-based nanostructures. The book offers future guidelines for designing new semiconductor-based photocatalysts, with low cost and high efficiency, for a range of products aimed at environmental protection. The book covers the fundamentals of nanotechnology, the synthesis of nanotechnology, and the use of metal oxide, metal sulfide, and carbon-based nanomaterials in photocatalysis. The book also discusses the major challenges of using photocatalytic nanomaterials on a broad scale. The book then explores how photocatalytic nanomaterials and nanocomposites are being used for sustainable development applications, including environmental protection, pharmaceuticals, and air purification. The final chapter considers the recent advances in the field and outlines future perspectives on the technology. This is an important reference for materials scientists, chemical engineers, energy scientists, and anyone looking to understand more about the photocatalytic potential of nanomaterials, and their possible environmental applications. Explains why the properties of semiconductor-based nanomaterials make them particularly good for environmental applications Explores how photocatalytic nanomaterials and nanocomposites are being used for sustainable development applications, including environmental protection, pharmaceuticals, and air purification Discusses the major challenges of using photocatalytic nanomaterials on a broad scale
Carbon Nanomaterials for Agri-food and Environmental Applications discusses the characterization, processing and applications of carbon-based nanostructured materials in the agricultural and environmental sectors. Sections discuss the synthesis and characterization of carbon nanotubes, the technological developments in environmental applications of carbon-based nanomaterials, and agri-food applications. The book also covers the toxic effects of engineered carbon nanoparticles on the environment, and in plants and animals. Finally, quality control and risk management are addressed to assess health and environmental risks. This is an applicable book for graduate students, researchers and those in industrial sectors of science and technology who want to learn more about carbon nanomaterials. Compares a range of carbon-based nanomaterials, showing how they are used for a range of agricultural and environmental applications Discusses the challenges and toxicity of different types of carbon-based nanomaterials for environmental and agricultural applications Explores when different classes of nanomaterial should be used in different environments
Nanomaterials Applications for Environmental Matrices: Water, Soil and Air takes a highly interdisciplinary approach in evaluating the use of a range of nanomaterials for various environmental applications, focusing, in particular, on their use in soil remediation, in improving water cleanliness, and in improving air quality. The book will not only help both materials scientists and environmental scientists understand the role played by nanomaterials in achieving these goals, but also give them practical ways they can be used to this end. Brings together the various applications and experimental aspects of nanoscience in the fields of chemistry, biology, environmental science and physics Maps the relationship between synthesis, properties and environmental interactions of nanomaterials, enabling greater understanding Describes new application opportunities for using nanomaterials in pollution trace detection and environmental improvement
Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials. Offers comprehensive details on novel and emerging nanomaterials Presents a comprehensive view of new and emerging tactics for the synthesis of efficient nanomaterials Describes and monitors the functions of applications of new and emerging nanomaterials in the biomedical, environmental and energy fields
Nanomaterials for Environmental Applications offers a comprehensive review of the latest advances in nanomaterials-based technologies for the treatment of emerging contaminants in wastewater. It describes the latest developments in the synthesis protocols, including the synthesis of different kinds of nanostructure materials using various physical and chemical methods. Features Discusses the synthesis and characterization of important nanomaterials such as carbon nanostructures, metal and metal oxide nanostructures, polymer nanostructures, and smart 1D-–3D nanomaterials Presents the latest techniques used in the characterization of nanomaterials Covers environmental applications including the remediation of pollutants in wastewater and water purification and disinfection Examines the sources, fate, transport, and ecotoxicology of nanomaterials in the environment. Aimed at researchers and industry professionals, this work will be of interest to chemical, environmental, and materials engineers concerned with the application of advanced materials for environmental and water remediation. Mohamed Abou El-Fetouh Barakat is a Professor of Environmental Sciences at both King Abdulaziz University (KAU)- Saudi Arabia, and Central Metallurgical R&D Institute (CMRDI)- Egypt. He is highly qualified in the fields of industrial waste management and pollution control as well as catalysis and nanotechnology. His experience includes academic research works in Japan, Germany, the United States and Saudi Arabia, as well as initiating and leading industrial research projects in Egypt jointly with the United States. Rajeev Kumar is an Associate Professor in the Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia. His research activities are in the areas of wastewater treatment and materials science. He studies the adsorption and photocatalytic properties of nanomaterials for the removal of contaminants from wastewater.
An overview of the current state of nanotechnology-based devices with applications in environmental science, focusing on nanomaterials and polymer nanocomposites. The handbook pays special attention to those nanotechnology-based approaches that promise easier, faster and cheaper processes in environmental monitoring and remediation. Furthermore, it presents up-to-date information on the economics, toxicity and regulations related to nanotechnology in detail. The book closes with a look at the role of nanotechnology for a green and sustainable future. With its coverage of existing and soon-to-be-realized devices this is an indispensable reference for both academic and corporate R&D.
The first volume in an exciting new series, Annual Review of Nano Research, this formidable collection of review articles sees renowned contributors from eight different countries tackle the most recent advances in nanofabrication, nanomaterials and nanostructures.The broad coverage of topics in nanotechnology and nanoscience also includes a special focus on the hot topic of biomedical applications of nanomaterials. The important names contributing to the volume include: M R Bockstaller (USA), L Duclaux (France), S Forster (Germany), W Fritzsche (Germany), L Jiang (China), C Lopez (Spain), W J Parak (Germany), B Samori (Italy), U S Schubert (The Netherlands), S Shinkai (Japan), A Stein (USA), S M Hou (China), and Y N Xia (USA).The volume serves both as a handy reference for experts active in the field and as an excellent introduction to scientists whose expertise lies elsewhere but who are interested in learning about this cutting-edge research area.