Download Free Entropy And Non Equilibrium Statistical Mechanics Book in PDF and EPUB Free Download. You can read online Entropy And Non Equilibrium Statistical Mechanics and write the review.

Nonequilibrium statistical mechanics has a long history featuring diverse aspects. It has been a major research field in physics and will remain so in the future. Even regarding the concept of entropy, there exists a longstanding problem concerning its definition for a system in a state far from equilibrium. In this Special Issue, we offered the possibility to discuss and present up-to-date problems that were not necessarily restricted to statistical mechanics. Theoretical and experimental papers are both presented, in addition to unifying research works. As the entropy itself is the central element of nonequilibrium processes, papers discuss various formulations of the second law and its consequences. In this Special Issue, recent progress in kinetic approaches to hydrodynamics, rational extended thermodynamics, entropy in a strongly nonequilibrium stationary state, and related topics are reported as both review articles as well as original research works.
Nonequilibrium statistical mechanics has a long history featuring diverse aspects. It has been a major research field in physics and will remain so in the future. Even regarding the concept of entropy, there exists a longstanding problem concerning its definition for a system in a state far from equilibrium. In this Special Issue, we offered the possibility to discuss and present up-to-date problems that were not necessarily restricted to statistical mechanics. Theoretical and experimental papers are both presented, in addition to unifying research works. As the entropy itself is the central element of nonequilibrium processes, papers discuss various formulations of the second law and its consequences. In this Special Issue, recent progress in kinetic approaches to hydrodynamics, rational extended thermodynamics, entropy in a strongly nonequilibrium stationary state, and related topics are reported as both review articles as well as original research works.
Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers from a wide range of backgrounds, the book presents a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.
This book encompasses our current understanding of the ensemble approach to many-body physics, phase transitions and other thermal phenomena, as well as the quantum foundations of linear response theory, kinetic equations and stochastic processes. It is destined to be a standard text for graduate students, but it will also serve the specialist-researcher in this fascinating field; some more elementary topics have been included in order to make the book self-contained.The historical methods of J Willard Gibbs and Ludwig Boltzmann, applied to the quantum description rather than phase space, are featured. The tools for computations in the microcanonical, canonical and grand-canonical ensembles are carefully developed and then applied to a variety of classical and standard quantum situations. After the language of second quantization has been introduced, strongly interacting systems, such as quantum liquids, superfluids and superconductivity, are treated in detail. For the connoisseur, there is a section on diagrammatic methods and applications.In the second part dealing with non-equilibrium processes, the emphasis is on the quantum foundations of Markovian behaviour and irreversibility via the Pauli-Van Hove master equation. Justifiable linear response expressions and the quantum-Boltzmann approach are discussed and applied to various condensed matter problems. From this basis the Onsager-Casimir relations are derived, together with the mesoscopic master equation, the Langevin equation and the Fokker-Planck truncation procedure. Brownian motion and modern stochastic problems such as fluctuations in optical signals and radiation fields briefly make the round.
This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.
This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.
Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.
This graduate-level book presents a self-contained exposition of fundamental topics in modern equilibrium and nonequilibrium statistical thermodynamics. The text follows a balanced approach between the macroscopic (thermodynamic) and microscopic (statistical) points of view. One notable feature is the large number of problems. Simple applications are given in 71 exercises, while more elaborate challenges are contained in 47 problems, some of which are useful for student projects.