Download Free Entropy And Multivariable Interpolation Book in PDF and EPUB Free Download. You can read online Entropy And Multivariable Interpolation and write the review.

We define a new notion of entropy for operators on Fock spaces and positive multi-Toeplitz kernels on free semigroups. This is studied in connection with factorization theorems for (e.g., multi-Toeplitz, multi-analytic, etc.) operators on Fock spaces. These results lead to entropy inequalities and entropy formulas for positive multi-Toeplitz kernels on free semigroups (resp. multi-analytic operators) and consequences concerning the extreme points of the unit ball of the noncommutative analytic Toeplitz algebra $F ninfty$. We obtain several geometric characterizations of the central intertwining lifting, a maximal principle, and a permanence principle for the noncommutative commutant lifting theorem. Under certain natural conditions, we find explicit forms for the maximal entropy solution of this multivariable commutant lifting theorem. All these results are used to solve maximal entropy interpolation problems in several variables. We obtain explicit forms for the maximal entropy solution (as well as its entropy) of the Sarason, Caratheodory-Schur, and Nevanlinna-Pick type interpolation problems for the noncommutative (resp. commutative) analytic Toeplitz algebra $F ninfty$ (resp. $W ninfty$) and their tensor products with $B({\mathcal H , {\mathcal K )$. In particular, we provide explicit forms for the maximal entropy solutions of several interpolation problems on the unit ball of $\mathbb{C n$.
We define a new notion of entropy for operators on Fock spaces and positive multi-Toeplitz kernels on free semigroups. This is studied in connection with factorization theorems for (e.g., multi-Toeplitz, multi-analytic, etc.) operators on Fock spaces. These results lead to entropy inequalities and entropy formulas for positive multi-Toeplitz kernels on free semigroups (resp. multi-analytic operators) and consequences concerning the extreme points of the unit ball of the noncommutative analytic Toeplitz algebra 'F ninfty'. We obtain several geometric characterizations of the central intertwining lifting, a maximal principle, and a permanence principle for the noncommutative commutant lifting theorem. Under certain natural conditions, we find explicit forms for the maximal entropy solution of this multivariable commutant lifting theorem. All these results are used to solve maximal entropy interpolation problems in several variables. We obtain explicit forms for the maximal entropy solution (as well as its entropy) of the Sarason, Caratheodory-Schur, and Nevanlinna-Pick type interpolation problems for the noncommutative (resp. commutative) analytic Toeplitz algebra 'F ninfty' (resp. In particular, we provide explicit forms for the maximal entropy solutions of several interpolation problems on the unit ball of '\mathbb{C n'.
Questions of existence, multiplicity, and regularity of free boundaries for prescribed data need to be addressed and their solutions lead to nonlinear problems. In this paper an equivalence is established between Bernoulli free-boundary problems and a class of equations for real-valued functions of one real variable.
The authors study highest weight representations of shifted Yangians over an algebraically closed field of characteristic $0$. In particular, they classify the finite dimensional irreducible representations and explain how to compute their Gelfand-Tsetlin characters in terms of known characters of standard modules and certain Kazhdan-Lusztig polynomials. The authors' approach exploits the relationship between shifted Yangians and the finite W-algebras associated to nilpotent orbits in general linear Lie algebras.
The author defines and proves a noncommutative generalization of a formula relating the Maslov index of a triple of Lagrangian subspaces of a symplectic vector space to eta-invariants associated to a pair of Lagrangian subspaces. The noncommutative Maslov index, defined for modules over a $C *$-algebra $\mathcal{A}$, is an element in $K_0(\mathcal{A})$. The generalized formula calculates its Chern character in the de Rham homology of certain dense subalgebras of $\mathcal{A}$. The proof is a noncommutative Atiyah-Patodi-Singer index theorem for a particular Dirac operator twisted by an $\mathcal{A}$-vector bundle. The author develops an analytic framework for this type of index problem.
Sir Arthur Conan Doyle's famous fictional detective Sherlock Holmes and his sidekick Dr. Watson go camping and pitch their tent under the stars. During the night, Holmes wakes his companion and says, ``Watson, look up at the stars and tell me what you deduce.'' Watson says, ``I see millions of stars, and it is quite likely that a few of them are planets just like Earth. Therefore there may also be life on these planets.'' Holmes replies, ``Watson, you idiot. Somebody stole ourtent.'' When seeking proofs of Ramanujan's identities for the Rogers-Ramanujan functions, Watson, i.e., G. N. Watson, was not an ``idiot.'' He, L. J. Rogers, and D. M. Bressoud found proofs for several of the identities. A. J. F. Biagioli devised proofs for most (but not all) of the remaining identities.Although some of the proofs of Watson, Rogers, and Bressoud are likely in the spirit of those found by Ramanujan, those of Biagioli are not. in particular, Biagioli used the theory of modular forms. Haunted by the fact that little progress has been made into Ramanujan's insights on these identities in the past 85 years, the present authors sought ``more natural'' proofs. Thus, instead of a missing tent, we have had missing proofs, i.e., Ramanujan's missing proofs of his forty identities for theRogers-Ramanujan functions. in this paper, for 35 of the 40 identities, the authors offer proofs that are in the spirit of Ramanujan. Some of the proofs presented here are due to Watson, Rogers, and Bressoud, but most are new. Moreover, for several identities, the authors present two or threeproofs. For the five identities that they are unable to prove, they provide non-rigorous verifications based on an asymptotic analysis of the associated Rogers-Ramanujan functions. This method, which is related to the 5-dissection of the generating function for cranks found in Ramanujan's lost notebook, is what Ramanujan might have used to discover several of the more difficult identities. Some of the new methods in this paper can be employed to establish new identities for the Rogers-Ramanujanfunctions.
Over the course of his distinguished career, Jörg Eschmeier made a number of fundamental contributions to the development of operator theory and related topics. The chapters in this volume, compiled in his memory, are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
The author studies the group of rational concordance classes of codimension two knots in rational homology spheres. He gives a full calculation of its algebraic theory by developing a complete set of new invariants. For computation, he relates these invariants with limiting behaviour of the Artin reciprocity over an infinite tower of number fields and analyzes it using tools from algebraic number theory. In higher dimensions it classifies the rational concordance group of knots whose ambient space satisfies a certain cobordism theoretic condition. In particular, he constructs infinitely many torsion elements. He shows that the structure of the rational concordance group is much more complicated than the integral concordance group from a topological viewpoint. He also investigates the structure peculiar to knots in rational homology 3-spheres. To obtain further nontrivial obstructions in this dimension, he develops a technique of controlling a certain limit of the von Neumann $L 2$-signature invariants.
This volume records papers given at the fourteenth international maximum entropy conference, held at St John's College Cambridge, England. It seems hard to believe that just thirteen years have passed since the first in the series, held at the University of Wyoming in 1981, and six years have passed since the meeting last took place here in Cambridge. So much has happened. There are two major themes at these meetings, inference and physics. The inference work uses the confluence of Bayesian and maximum entropy ideas to develop and explore a wide range of scientific applications, mostly concerning data analysis in one form or another. The physics work uses maximum entropy ideas to explore the thermodynamic world of macroscopic phenomena. Of the two, physics has the deeper historical roots, and much of the inspiration behind the inference work derives from physics. Yet it is no accident that most of the papers at these meetings are on the inference side. To develop new physics, one must use one's brains alone. To develop inference, computers are used as well, so that the stunning advances in computational power render the field open to rapid advance. Indeed, we have seen a revolution. In the larger world of statistics beyond the maximum entropy movement as such, there is now an explosion of work in Bayesian methods, as the inherent superiority of a defensible and consistent logical structure becomes increasingly apparent in practice.
"Volume 205, number 964 (third of 5 numbers)."