Download Free Entire Functions Book in PDF and EPUB Free Download. You can read online Entire Functions and write the review.

Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Entire Functions
Entire Functions focuses on complex numbers and the algebraic operations on them and the basic principles of mathematical analysis. The book first elaborates on the concept of an entire function, including the natural generalization of the concept of a polynomial and power series. The text then takes a look at the maximum absolute value and the order of an entire function, as well as calculations for the coefficients of power series representing a given function, use of integrals, and complex numbers. The publication elaborates on the zeros of an entire function and the fundamental theorem of algebra and Picard's little theorem. Calculations for the zeros of an entire function and numerical representations of Liouville's theorem and Picard's little theorem are presented. The book also examines algebraic relationships and addition theorems, including an explanation of Weierstrass' theorem and Picard's little theorem. The manuscript is a vital reference for students interested in the numerical approaches involved in entire functions.
Introduction to the Theory of Entire Functions
I - Entire functions of several complex variables constitute an important and original chapter in complex analysis. The study is often motivated by certain applications to specific problems in other areas of mathematics: partial differential equations via the Fourier-Laplace transformation and convolution operators, analytic number theory and problems of transcen dence, or approximation theory, just to name a few. What is important for these applications is to find solutions which satisfy certain growth conditions. The specific problem defines inherently a growth scale, and one seeks a solution of the problem which satisfies certain growth conditions on this scale, and sometimes solutions of minimal asymp totic growth or optimal solutions in some sense. For one complex variable the study of solutions with growth conditions forms the core of the classical theory of entire functions and, historically, the relationship between the number of zeros of an entire function f(z) of one complex variable and the growth of If I (or equivalently log If I) was the first example of a systematic study of growth conditions in a general setting. Problems with growth conditions on the solutions demand much more precise information than existence theorems. The correspondence between two scales of growth can be interpreted often as a correspondence between families of bounded sets in certain Frechet spaces. However, for applications it is of utmost importance to develop precise and explicit representations of the solutions.
As a brilliant university lecturer, B. Ya. Levin attracted a large audience of working mathematicians and of students from various levels and backgrounds. For approximately 40 years, his Kharkov University seminar was a school for mathematicians working in analysis and a center for active research. This monograph aims to expose the main facts of the theory of entire functions and to give their applications in real and functional analysis. The general theory starts with the fundamental results on the growth of entire functions of finite order, their factorization according to the Hadamard theorem, properties of indicator and theorems of Phragmen-Lindelof type.
This three-chapter treatment introduces principal methods, discusses the theory of entire functions of finite order, and applies the first chapter's methods to the functions of the second chapter. 1961 edition.
This revised and enlarged second edition is devoted to asymptotical questions of the theory of entire and plurisubharmonic functions. A separate chapter deals with applications in biophysics. The book is of interest to research specialists in theoretical and applied mathematics, postgraduates and students who are interested in complex and real analysis and its applications.