Download Free Enhancement Of The 1988 Northern Us Drought Due To Wildfires Book in PDF and EPUB Free Download. You can read online Enhancement Of The 1988 Northern Us Drought Due To Wildfires and write the review.

This assessment provides input to the reauthorized National Integrated Drought Information System (NIDIS) and the National Climate Assessment (NCA), and it establishes the scientific foundation needed to manage for drought resilience and adaptation. Focal areas include drought characterization; drought impacts on forest processes and disturbances such as insect outbreaks and wildfire; and consequences for forest and rangeland values. Drought can be a severe natural disaster with substantial social and economic consequences. Drought becomes most obvious when large-scale changes are observed; however, even moderate drought can have long-lasting impacts on the structure and function of forests and rangelands without these obvious large-scale changes. Large, stand-level impacts of drought are already underway in the West, but all U.S. forests are vulnerable to drought. Drought-associated forest disturbances are expected to increase with climatic change. Management actions can either mitigate or exacerbate the effects of drought. A first principal for increasing resilience and adaptation is to avoid management actions that exacerbate the effects of current or future drought. Options to mitigate drought include altering structural or functional components of vegetation, minimizing drought-mediated disturbance such as wildfire or insect outbreaks, and managing for reliable flow of water.
Plants have profoundly moulded the Earth's climate and the evolutionary trajectory of life. Far from being 'silent witnesses to the passage of time', plants are dynamic components of our world, shaping the environment throughout history as much as that environment has shaped them. In The Emerald Planet, David Beerling puts plants centre stage, revealing the crucial role they have played in driving global changes in the environment, in recording hidden facets of Earth's history, and in helping us to predict its future. His account draws together evidence from fossil plants, from experiments with their living counterparts, and from computer models of the 'Earth System', to illuminate the history of our planet and its biodiversity. This new approach reveals how plummeting carbon dioxide levels removed a barrier to the evolution of the leaf; how plants played a starring role in pushing oxygen levels upwards, allowing spectacular giant insects to thrive in the Carboniferous; and it strengthens fascinating and contentious fossil evidence for an ancient hole in the ozone layer. Along the way, Beerling introduces a lively cast of pioneering scientists from Victorian times onwards whose discoveries provided the crucial background to these and the other puzzles. This understanding of our planet's past sheds a sobering light on our own climate-changing activities, and offers clues to what our climatic and ecological futures might look like. There could be no more important time to take a close look at plants, and to understand the history of the world through the stories they tell. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
Scientists and managers alike need timely, cost-effective, and technically appropriate fire-related information to develop functional strategies for the diverse fire communities. "Remote Sensing Modeling and Applications to Wildland Fires" addresses wildland fire management needs by presenting discussions that link ecology and the physical sciences from local to regional levels, views on integrated decision support data for policy and decision makers, new technologies and techniques, and future challenges and how remote sensing might help to address them. While creating awareness of wildland fire management and rehabilitation issues, hands-on experience in applying remote sensing and simulation modeling is also shared. This book will be a useful reference work for researchers, practitioners and graduate students in the fields of fire science, remote sensing and modeling applications. Professor John J. Qu works at the Department of Geography and GeoInformation Science at George Mason University (GMU), USA. He is the Founder and Director of the Environmental Science and Technology Center (ESTC) and EastFIRE Lab at GMU.
Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex inter
Recognizing drought as a characteristic feature of the North American climate, the contributors to this volume seek to organize available evidence of both prehistoric and modern drought events and to provide information on the severity of droughts, especially those which have occurred since weather records have been kept. The impacts of modern-era droughts on production and the potential impact of future droughts on the productivity of North American agriculture are examined. The authors explore the effeats of past droughts on the social, cultural, and political life of the population; the possible effects of drought on today's energy- and techno logy-intensive society; and the ramifications of drought for the national economy. The social and political strategies that local, state, and federal governments may use to meliorate the effects of drought are also considered, as are some possible technological defenses against drought—weather modification, expanded irrigation, new techniques of water harvesting and storage, and new agronomic adaptations. Finally, the critical question of whether future droughts can be forecast is examined.
Both fire and climatic variability have monumental impacts on the dynamics of temperate ecosystems. These impacts can sometimes be extreme or devastating as seen in recent El Nino/La Nina cycles and in uncontrolled fire occurrences. This volume brings together research conducted in western North and South America, areas of a great deal of collaborative work on the influence of people and climate change on fire regimes. In order to give perspective to patterns of change over time, it emphasizes the integration of paleoecological studies with studies of modern ecosystems. Data from a range of spatial scales, from individual plants to communities and ecosystems to landscape and regional levels, are included. Contributions come from fire ecology, paleoecology, biogeography, paleoclimatology, landscape and ecosystem ecology, ecological modeling, forest management, plant community ecology and plant morphology. The book gives a synthetic overview of methods, data and simulation models for evaluating fire regime processes in forests, shrublands and woodlands and assembles case studies of fire, climate and land use histories. The unique approach of this book gives researchers the benefits of a north-south comparison as well as the integration of paleoecological histories, current ecosystem dynamics and modeling of future changes.
Atmospheric Oscillations: Sources of Subseasonal-to-Seasonal Variability and Predictability provides a thorough examination of the various atmospheric oscillations of scientific and societal importance in the context of natural climate variability and anthropogenic climate change. Included are introductions to each phenomenon, an overview of the state of knowledge, in-depth analysis of relevant dynamical processes, and discussions of the impacts on weather and climate and implications to subseasonal-to-seasonal predictions and predictability. Written by an international team of experts in the fields of atmospheric and planetary sciences, each chapter of the book either focuses on a specific atmospheric oscillation or the interaction between multiple oscillations. - Includes a comprehensive accounting of various atmospheric oscillations across different regions and subseasonal-to-seasonal time scales - Presents a detailed examination of each atmospheric oscillation, along with key examples of their interactions - Provides an in-depth analysis and discussion of relevant dynamical processes and implications to weather and climate predictions
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.