Download Free Enhanced Spectroscopy And Photochemistry Of Molecules Adsorbed On Metal Surfaces Book in PDF and EPUB Free Download. You can read online Enhanced Spectroscopy And Photochemistry Of Molecules Adsorbed On Metal Surfaces and write the review.

Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.
Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.
Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.
Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst
This up-to-date overview describes in detail the physics of localized surface plasmon polaritons excited near fine metallic structures and the principles of near-field optics and microscopy related to this localized field. It also covers wider fields, from local spectroscopy to atom manipulation.
Studies of free radicals on surfaces are of interest for several reasons: the spontaneous or stimulated formation of radicals from adsorbed molecules may represent one possible mechanism for heterogeneous catalysis. In some cases the radicals are ionic, indicating that primary oxidation and reduction reactions occur. Radicals can also be used as probes to investigate diffusion processes on catalytic surfaces. The first direct observations were made more than 30 years ago, but detailed studies of structure, reactions and mobility have only recently become feasible with the advent of powerful spectroscopic techniques, to a great extent developed and used by the contributors to this volume. This comprehensive review describes new trends in the field. Leading experts write about the nature of surface active sites, methods to identify them, and the radicals formed from adsorbed molecules interacting with the surface. The emphasis is on the fundamentals covering thermal, photostimulated and radiation induced reactions as well as diffusion processes. This provides the necessary background for technological applications. This book will be useful to those who are interested in surface chemistry, heterogeneous catalysis as well as those who want to study reactive intermediates in chemical reactions. It is also of interest to scientists in photo and radiation physics and chemistry.
Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.