Download Free Enhanced Qos Centric Backoff Algorithm For Wireless Sensor Network Book in PDF and EPUB Free Download. You can read online Enhanced Qos Centric Backoff Algorithm For Wireless Sensor Network and write the review.

Wireless Sensor Network (WSN) is the state-of-the-art technology to perform distributed processing of data and form a synergy to accomplish intended functions. It has evolved from WLAN, WMAN and WMN to leverage the advantage of micro-processing, mobility and ubiquity to perform tasks such as accessibility to hard-reach area, deployment in extreme conditions, collection of data in geographically diversified fields and so on, whereas other types of wireless network have got constraints. In a distributed node structure like WSN, one of the pivotal concerns of exchanging data is the ability to streamline data access in between the nodes when all the nodes demand for share of channel and avoid bottleneck and high-latency as much as possible. If the radio channel itself is spectrum constrained e.g. single-channel radio, the nodes must operate in a fashion to minimize the collision of accessing shared channel. This issue severely affects the network throughput when packets of different classes (e.g. audio, video, general data, network status and so on) are handled. In this scenario, random channel access mechanism enables the allocation of radio channel to the nodes and streamline the packet transfer. Existing random channel access mechanism makes the sender node to wait for a random period out of predefined waiting time window which is called backoff period, before acquiring the channel and avoid collision. But, this mechanism implements uniform distribution of selecting this random waiting time out of the backoff period. This causes the overlap of the selected time and results in collision. In our thesis work we propose, non-uniform probability distribution of selecting random waiting period. This method segments the whole backoff period in small time slots and augments the probability of sending data in a time slot following an exponential pattern as each of the previous time slots go silent (i.e. none of the senders contending does access the channel). This method gives fine grained control of the channel access and allows the mechanism to reflect Quality of Service (QoS) as the probability of accessing the channel can be optimized by custom parameters. Our proposed method has been tested by simulation environment in NS 2, one of the state-of-the-art network simulation environments. The tests results speak for themselves to show better latency, throughput and less collision.
The objective of this research is to focus on handling QoS for Wireless Sensor Network (WSN). Packet dropping and modifying is common attack in wireless sensor networks. These attacks interrupt the communication network and are difficult to identify in multi hop sensor networks. This paper presents an effective scheme to identify the packet droppers and modifiers by using ranking algorithms on the DAG generated by the nodes in the network. Simulation results are presented. Analysis of the performance of prominent routing protocols used in Wireless sensor networks with respect to throughput, routing overhead, PDR, delay. These parameters are calculated for the routing protocols AODV, DSDV, TORA, LEACH and the performance is measured and compared for the parameters to improve QoS of WSN. Wireless sensor network can get separated into multiple connected components due to the failure of some of its nodes, which is called a "cut." In this paper, we consider the problem of detecting cuts by the remaining nodes of a wireless sensor network. We propose an algorithm that allows 1) every node to detect when the connectivity to a specially designated node has been lost, and 2) one or more nodes (that are connected to the special node after the cut) to detect the occurrence of the cut. The algorithm is distributed and asynchronous: every node needs to communicate with only those nodes that are within its communication range. The algorithm is based on the iterative computation of a fictitious "electrical potential" of the nodes. The convergence rate of the underlying iterative scheme is independent of the size and structure of the network.
This book is a printed edition of the Special Issue "QoS in Wireless Sensor/Actuator Networks and Systems" that was published in JSAN
IEEE 802.15.4 is one of the most prominent MAC protocol standard designed to achieve low-power and low-rate wireless personal area networks. The contention access period of IEEE 802.15.4 employs carrier sense multiple access with collision avoidance (CSMA/CA) algorithm. A long random backoff time causes longer average delay, while a small one gives a high collision rate. In this book, we propose an efficient backoff algorithm, called EBA-15.4MAC that enhances the performance of slotted CSMA/CA algorithm. EBA-15.4MAC is designed based on two new techniques; firstly, it updates the contention window size based on the probability of collision parameter. Secondly, EBA-15.4MAC resolves the problem of access collision via the deployment of a novel Temporary Backoff (TB) and Next Temporary Backoff (NTB). In this case, the nodes not choose backoff exponent randomly as mentioned in the standard but they select TB and NTB values which can be (10-50)% of the actual backoff delay selected by the node randomly. By using these two new methods, EBA-15.4MAC minimizes the level of collision since the probability of two nodes selecting the same backoff period will be low.
This book provides a systematic introduction to the fundamental concepts, major challenges, and effective solutions for Quality of Service in Wireless Sensor Networks (WSNs). Unlike other books on the topic, it focuses on the networking aspects of WSNs, discussing the most important networking issues, including network architecture design, medium access control, routing and data dissemination, node clustering, node localization, query processing, data aggregation, transport and quality of service, time synchronization, and network security. Featuring contributions from researchers, this book strikes a balance between fundamental concepts and new technologies, providing readers with unprecedented insights into WSNs from a networking perspective. It is essential reading for a broad audience, including academics, research engineers, and practitioners, particularly postgraduate/postdoctoral researchers and engineers in industry. It is also suitable as a textbook or supplementary reading for graduate computer engineering and computer science courses.
This book explores various challenging problems and applications areas of wireless sensor networks (WSNs), and identifies the current issues and future research challenges. Discussing the latest developments and advances, it covers all aspects of in WSNs, from architecture to protocols design, and from algorithm development to synchronization issues. As such the book is an essential reference resource for undergraduate and postgraduate students as well as scholars and academics working in the field.
The Handbook of Algorithms for Wireless Networking and Mobile Computing focuses on several aspects of mobile computing, particularly algorithmic methods and distributed computing with mobile communications capability. It provides the topics that are crucial for building the foundation for the design and construction of future generations of mobile and wireless networks, including cellular, wireless ad hoc, sensor, and ubiquitous networks. Following an analysis of fundamental algorithms and protocols, the book offers a basic overview of wireless technologies and networks. Other topics include issues related to mobility, aspects of QoS provisioning in wireless networks, future applications, and much more.
Learn the fundamental concepts, major challenges, and effective solutions in wireless sensor networking This book provides a comprehensive and systematic introduction to the fundamental concepts, major challenges, and effective solutions in wireless sensor networking (WSN). Distinguished from other books, it focuses on the networking aspects of WSNs and covers the most important networking issues, including network architecture design, medium access control, routing and data dissemination, node clustering, node localization, query processing, data aggregation, transport and quality of service, time synchronization, network security, and sensor network standards. With contributions from internationally renowned researchers, Wireless Sensor Networks expertly strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with unprecedented insights into WSNs from a networking perspective. It is essential reading for a broad audience, including academic researchers, research engineers, and practitioners in industry. It is also suitable as a textbook or supplementary reading for electrical engineering, computer engineering, and computer science courses at the graduate level.