Download Free Enhanced Electrochemical Advanced Oxidation Processes For Wastewater Sludge Stabilization And Reuse Book in PDF and EPUB Free Download. You can read online Enhanced Electrochemical Advanced Oxidation Processes For Wastewater Sludge Stabilization And Reuse and write the review.

The growing quantities of waste sludge generated in municipal and industrial wastewater treatment plants containing various organics and other contaminants require novel treatment technologies that are capable of achieving significant removal efficiencies and producing reusable sludge products. As a response, a large variety of advanced oxidation processes (AOPs) have been investigated to remove the present contaminants from wastewaters and limited cases of waste sludge. Multidisciplinary researches have been carried out accordingly. In this regard, electrochemical advanced oxidation processes (EAOPs) have emerged as novel environmental-friendly and effective treatment technologies for the elimination of several organic contaminants. Considerable validation of these methods has been performed at both the bench-scale and pilot-scale. Although a promising new technology, the mechanisms involved in the oxidation of organic compounds during electrochemical advanced oxidation processes and the corresponding environmental impacts have not been completely addressed until now. This book aims at the electrochemical advanced oxidation processes occurrence from different points of view, describing its related technologies, providing an assessment of the development and efficiency, and highlighting various aspects of waste activated sludge stabilisation and reuse accordingly in five chapters. In the first chapter a brief review to waste sludge stabilisation and reuse has been presented. The second chapter provides an overview to advanced oxidation processes. The third chapter describes the various electrochemical advanced oxidation methods. Chapter four presents and discusses the own experimental investigations results employing the Fered-Fenton EAOP. The modeling of the results of the own experimental studies results by means of Taguchi method and artificial neural networks has been performed in the fifth chapter. The main goal of this book is to gather different updated viewpoints according to the electrochemical advanced oxidation processes and to provide the own experimental studies results accordingly in order to present students, researchers, engineers and managers with useful knowledge in this regard.
Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology is a complete resource covering the fundamentals and applications of all Advanced Oxidation Processes (AOPs). This book presents the most up-to-date research on AOPs and makes the argument that AOPs offer an eco-friendly method of wastewater treatment. In addition to an overview of the fundamentals and applications, it details the reactive species involved, along with sections on reactor designs, thus helping readers understand and implement these methods. - Presents in-depth coverage of all types of Advanced Oxidation Processes, including Super Critical Water Oxidation, Photo-Fenton and Like Processes - Includes a fundamental review, applications, reactive species and reactor designs - Reviews applications across waste types, including industrial waste, domestic and municipal sewage, and hospital wastes
Advanced Oxidation Processes for Wastewater Treatment: An Innovative Approach: This book highlights the importance of various innovative advanced oxidation technology to clean up the environment from pollution caused by human activities. It assesses the potential application of several existing bioremediation techniques and introduces new emerging technologies. This book is an updated vision of the existing advanced oxidation strategies with their limitations and challenges and their potential application to remove environmental pollutants. It also introduces the new trends and advances in environmental bioremediation technology with thorough discussion of recent developments in this field. This book highlights the importance of different innovative advanced oxidation process to deal with the ever-increasing number of environmental pollutants. Features: Illustrates the importance of various advance oxidation processes in effluent treatment plant Points out the reuse of the treated wastewater through emerging advance oxidation technologies for effluent treatment plant Highlights the recovery of resources from wastewater Pays attention to the occurrence of novel micro-pollutants Emphasizes the role of nanotechnology in bioremediation of pollutants Introduces new trends in environmental bioremediation
The suitability of Advanced Oxidation Processes (AOPs) for pollutant degradation was recognised in the early 1970s and much research and development work has been undertaken to commercialise some of these processes. AOPs have shown great potential in treating pollutants at both low and high concentrations and have found applications as diverse as ground water treatment, municipal wastewater sludge destruction and VOCs control. Advanced Oxidation Processes for Water and Wastewater Treatment is an overview of the advanced oxidation processes currently used or proposed for the remediation of water, wastewater, odours and sludge. The book contains two opening chapters which present introductions to advanced oxidation processes and a background to UV photolysis, seven chapters focusing on individual advanced oxidation processes and, finally, three chapters concentrating on selected applications of advanced oxidation processes. Advanced Oxidation Processes for Water and Wastewater Treatment will be invaluable to readers interested in water and wastewater treatment processes, including professionals and suppliers, as well as students and academics studying in this area. Dr Simon Parsons is a Senior Lecturer in Water Sciences at Cranfield University with ten years' experience of industrial and academic research and development.
Advanced Oxidation Processes (AOPs) rely on the efficient generation of reactive radical species and are increasingly attractive options for water remediation from a wide variety of organic micropollutants of human health and/or environmental concern. Advanced Oxidation Processes for Water Treatment covers the key advanced oxidation processes developed for chemical contaminant destruction in polluted water sources, some of which have been implemented successfully at water treatment plants around the world. The book is structured in two sections; the first part is dedicated to the most relevant AOPs, whereas the topics covered in the second section include the photochemistry of chemical contaminants in the aquatic environment, advanced water treatment for water reuse, implementation of advanced treatment processes for drinking water production at a state-of-the art water treatment plant in Europe, advanced treatment of municipal and industrial wastewater, and green technologies for water remediation. The advanced oxidation processes discussed in the book cover the following aspects: - Process principles including the most recent scientific findings and interpretation. - Classes of compounds suitable to AOP treatment and examples of reaction mechanisms. - Chemical and photochemical degradation kinetics and modelling. - Water quality impact on process performance and practical considerations on process parameter selection criteria. - Process limitations and byproduct formation and strategies to mitigate any potential adverse effects on the treated water quality. - AOP equipment design and economics considerations. - Research studies and outcomes. - Case studies relevant to process implementation to water treatment. - Commercial applications. - Future research needs. Advanced Oxidation Processes for Water Treatment presents the most recent scientific and technological achievements in process understanding and implementation, and addresses to anyone interested in water remediation, including water industry professionals, consulting engineers, regulators, academics, students. Editor: Mihaela I. Stefan - Trojan Technologies - Canada
Approx.372 pagesApprox.372 pages
This volume discusses the theoretical fundamentals and potential applications of the original electro-Fenton (EF) process and its most innovative and promising versions, all of which are classified as electrochemical advanced oxidation processes. It consists of 15 chapters that review the latest advances and trends, material selection, reaction and reactor modeling and EF scale-up. It particularly focuses on the applications of EF process in the treatment of toxic and persistent organic pollutants in water and soil, showing highly efficient removal for both lab-scale and pre-pilot setups. Indeed, the EF technology is now mature enough to be brought to market, and this collection of contributions from leading experts in the field constitutes a timely milestone for scientists and engineers.
Electrochemical Water Treatment Methods provides the fundamentals and applications of electrochemical water treatment methods to treat industrial effluents. Sections provide an overview of the technology, its current state of development, and how it is making its way into industry applications. Other sections deal with historical developments and the fundamentals of 18 methods, including coupled methods, such as Electrocoagulation, Peroxi-Coagulation and Electro-Fenton treatments. In addition, users will find discussions that relate to industries such as Pulp and Paper, Pharmaceuticals, Textiles, and Urban/Domestic wastewater, amongst others. Final sections present advantages, disadvantages and ways to combine renewable energy sources and electrochemical methods to design sustainable facilities. Environmental and Chemical Engineers will benefit from the extensive collection of methods and industry focused application cases, but researchers in environmental chemistry will also find interesting examples on how methods can be transitioned from lab environments to practical applications. - Offers an excellent overview of the research advances and current applications of electrochemical technologies for water treatment - Explains, in a comprehensive way, the fundamentals of different electrochemical uses and applications of different technologies - Provides a large number of examples as evidence of practical applications of electrochemistry to environmental protection - Explores the combination possibilities with other treatment technologies or emerging technologies for destroying water pollutants
Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions
Advanced oxidation processes (AOPs) use chemical treatment to remove contaminants from water by oxidation with hydroxyl radicals. These hydroxyl radicals can be produced using UV light, ozone or hydrogen peroxide, but recently reactions have been developed that use persulfates as the radical source. Persulfates are strong oxidants with flexible in situ activation characteristics, including activation with heat, alkali conditions, electricity, ultrasonic treatment, transition metals, carbon and even organics. Persulfate activation can generate sulfate radicals as well as other reactive species. These reactive species, especially the sulfate radical, can degrade most organic pollutants making them valuable in the fields of water purification, soil remediation, disinfection, sludge dewatering, and other important applications in environmental systems. Describing recent developments in persulfate-based AOPs, this book aims to provide a summary of environmental applications for persulfate-based AOPs and to guide the reader, in a comprehensive way, through various advanced oxidation processes in environmental applications. Topics include new activation methods, activation mechanisms, and advanced materials for use in activating persulfate-based AOPs for different environmental applications.