Download Free Engineering The Complex Soc Book in PDF and EPUB Free Download. You can read online Engineering The Complex Soc and write the review.

Engineering the Complex SOC The first unified hardware/software guide to processor-centric SOC design Processor-centric approaches enable SOC designers to complete far larger projects in far less time. Engineering the Complex SOCis a comprehensive, example-driven guide to creating designs with configurable, extensible processors. Drawing upon Tensilica’s Xtensa architecture and TIE language, Dr. Chris Rowen systematically illuminates the issues, opportunities, and challenges of processor-centric design. Rowen introduces a radically new design methodology, then covers its essential techniques: processor configuration, extension, hardware/software co-generation, multiple processor partitioning/communication, and more. Coverage includes: Why extensible processors are necessary: shortcomings of current design methods Comparing extensible processors to traditional processors and hardwired logic Extensible processor architecture and mechanisms of processor extensibility Latency, throughput, coordination of parallel functions, hardware interconnect options, management of design complexity, and other issues Multiple-processor SOC architecture for embedded systems Task design from the viewpoints of software andhardware developers Advanced techniques: implementing complex state machines, task-to-task synchronization, power optimization, and more Toward a “sea of processors”: Long-term trends in SOC design and semiconductor technology For all architects, hardware engineers, software designers, and SOC program managers involved with complex SOC design; and for all managers investing in SOC designs, platforms, processors, or expertise. PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com
“Power Grid Complexity” introduces the complex system theory known as self-organized criticality (SOC) theory and complex network theory, and their applications to power systems. It studies the network characteristics of power systems, such as their small-world properties, structural vulnerability, decomposition and coordination strategies, and simplification and equivalence methods. The book also establishes four blackout models based on SOC theory through which the SOC of power systems is studied at both the macroscopic and microscopic levels. Additionally, applications of complex system theory in power system planning and emergency management platforms are also discussed in depth. This book can serve as a useful reference for engineers and researchers working with power systems. Shengwei Mei is a Professor at the Department of Electrical Engineering at Tsinghua University, China. Xuemin Zhang is a Lecturer at the Department of Electrical Engineering at Tsinghua University, China. Ming Cao is an Assistant Professor at the Faculty of Mathematics and Natural Sciences at the University of Groningen, the Netherlands.
This is the third edition of the European Workshop on Microelectronics Education (EWME). A steady-state regime has now been reached. An international community of university teachers is constituted; they exchange their experience and their pedagogical tools. They discuss the best ways to transfer the rapidly changing techniques to their students, and to introduce them to the new physical and mathematical concepts and models for the innovative techniques, devices, circuits and design methods. The number of abstracts submitted to EWME 2000 (about one hundred) enabled the scientific committee to proceed to a clear selection. EWME is a European meeting. Indeed, authors from 20 different European countries contribute to this volume. Nevertheless, the participation of authors from Brazil, Canada, China, New Zealand, and USA, shows that the workshop gradually attains an international dimension. th The 20 century can be characterized as the "century of electron". The electron, as an elementary particle, was discovered by J.J. Thomson in 1897, and was rapidly used to transfer energy and information. Thanks to electron, universe and micro-cosmos could be explored. Electron became the omnipotent and omnipresent, almost immaterial, angel of our W orId. This was made possible thanks to electronics and, for the last 30 years, to microelectronics. Microelectronics not only modified and even radically transformed the industrial and the every-day landscapes, but it also led to the so-called "information revolution" with which begins the 21 st century.
When I attended college we studied vacuum tubes in our junior year. At that time an average radio had ?ve vacuum tubes and better ones even seven. Then transistors appeared in 1960s. A good radio was judged to be one with more thententransistors. Latergoodradioshad15–20transistors and after that everyone stopped counting transistors. Today modern processors runing personal computers have over 10milliontransistorsandmoremillionswillbeaddedevery year. The difference between 20 and 20M is in complexity, methodology and business models. Designs with 20 tr- sistors are easily generated by design engineers without any tools, whilst designs with 20M transistors can not be done by humans in reasonable time without the help of Prof. Dr. Gajski demonstrates the Y-chart automation. This difference in complexity introduced a paradigm shift which required sophisticated methods and tools, and introduced design automation into design practice. By the decomposition of the design process into many tasks and abstraction levels the methodology of designing chips or systems has also evolved. Similarly, the business model has changed from vertical integration, in which one company did all the tasks from product speci?cation to manufacturing, to globally distributed, client server production in which most of the design and manufacturing tasks are outsourced.