Download Free Engineering Solutions For Sustainability Book in PDF and EPUB Free Download. You can read online Engineering Solutions For Sustainability and write the review.

Preface -- 1. Introduction -- 2. Setting up a design assignment -- 3. Structuring the sustainability context -- 4. Creating design solutions -- 5. Acquiring sustainable design competences.
A multidisciplinary introduction to sustainable engineering exploring challenges and solutions through practical examples and exercises.
Sustainable development is commonly defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." Sustainability in engineering incorporates ethical and social issues into the design of products and processes that will be used to benefit society as a whole. Sustainability Science and Engineering, Volume 1: Defining Principles sets out a series of "Sustainable Engineering Principles" that will help engineers design products and services to meet societal needs with minimal impact on the global ecosystem. Using specific examples and illustrations, the authors cleverly demonstrate opportunities for sustainable engineering, providing readers with valuable insight to applying these principles. This book is ideal for technical and non-technical readers looking to enhance their understanding of the impact of sustainability in a technical society.* Defines the principles of sustainable engineering* Provides specific examples of the application of sustainable engineering in industry* Represents the viewpoints of current leaders in the field and describes future needs in new technologies
Engineering for Sustainable Communities: Principles and Practices defines and outlines sustainable engineering methods for real-world engineering projects.
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
Sustainable Water Treatment: Engineering Solutions for a Variable Climate covers sustainable water and environmental engineering aspects relevant for the drainage and treatment of storm water and wastewater. The book explains the fundamental science and engineering principles for the student and professional market. Standard and novel design recommendations for sustainable technologies, such as constructed wetlands, sustainable drainage systems and sustainable flood retention basins are provided to account for the interests of professional engineers and environmental scientists. The book presents the latest research findings in wastewater treatment and runoff control that are ideal for academics and senior consultants. The book offers a challenging, diverse, holistic, multidisciplinary, experimental and modelling-orientated case study, covering topics such as natural wetlands, constructed treatment wetlands for pollution control, sustainable drainage systems managing diffuse pollution, specific applications, such as wetlands treating dye wastewater and ecological sanitation systems recycling treated waters for the irrigation of crops. - Explains the fundamental science and engineering principles behind each topic - Provides an easy-to-understand, descriptive overview of complex 'black box' drainage and treatment systems and general design issues involved - Includes a comprehensive analysis of asset performance, modelling of treatment processes, and an assessment of sustainability and economics
"The efficient utilization of energy, sustainable use of natural resources, and large-scale adoption of sustainable technologies is the key to a sustainable future. The Handbook of Sustainable Engineering provides tools that will help us achieve these goals". Nobel Prize Winner Dr. R.K. Pachauri, Chairman, UN Intergovernmental Panel on Climate Change As global society confronts the challenges of diminishing resources, ecological degradation, and climate change, engineers play a crucial role designing and building technologies and products that fulfil our needs for utility and sustainability. The Handbook of Sustainable Engineering equips readers with the context and the best practices derived from both academic research and practical examples of successful implementations of sustainable technical solutions. The handbook’s content revolves around the two themes, new ways of thinking and new business models, including sustainable production, products, service systems and consumption while addressing key assets based on new materials, optimized resource management, and new energy sources. Contributions reflect a focus on state-of-the art insights into employing smart materials, recycling e-waste, water utilization, solar cells, product lifecycles, transportation and reverse manufacturing. Supportive of this, underlying issues such as engineering education, consumer behaviour and the regulatory climate complete the handbook’s comprehensive treatment of the problems and most promising solutions.
Global Warming: Engineering Solutions goes beyond the discussion of what global warming is, and offers complete concrete solutions that can be used to help prevent global warming. Innovative engineering solutions are needed to reduce the effects of global warming. Discussed here are proposed engineering solutions for reducing global warming resulting from carbon dioxide pollution, poor energy and environment policies and emission pollution. Solutions discussed include but are not limited to: energy conversion technologies and their advantages, energy management and conservation, energy saving and energy security, renewable and sustainable energy technologies, emission reduction, sustainable development; pollution control and measures, policy development, global energy stability and sustainability.
Introduction to Sustainability for Engineers aims to incorporate sustainability into curricula for undergraduate engineering students. The book starts with an introduction to the concept of sustainability, outlining core principles for sustainable development to guide engineering practice and decision making, including key tools aimed at enabling, measuring and communicating sustainability. It also describes concepts as life cycle assessment, environmental economics, related institutional architecture and policy framework, business context of sustainability, and sustainable buildings and infrastructure. Appendices at the end of the book presents a summary of key concepts, strategies and tools introduced in the main text. Five Key Benefits: A comprehensive textbook for engineering students to develop competency in sustainability. Presents a framework for engineers to put sustainability into practice. Presents the link between sustainability and the design process. It shows the application of a sustainable engineering design process for putting sustainability into practice. There are well woven case studies and links to websites for learning in various engineering disciplines. Includes challenging exercises at the end of each chapter that will inspire students and stimulate discussion in the class.
This book contains a collection of papers presented at Engineering Solutions for Sustainability: Materials and Resources II, a special symposium organized as part of the TMS 2015 Annual Meeting & Exhibition and held in Orlando, Florida, March 15-19, 2015. With impending and burgeoning societal issues affecting both developed and emerging nations, the global engineering community has a responsibility and an opportunity to truly make a difference and contribute. The papers in this collection address what materials and resources are integral to meeting basic societal sustainability needs in critical areas of energy, transportation, housing, and recycling. Contributions focus on the engineering answers for cost-effective, sustainable pathways; the strategies for effective use of engineering solutions; and the role of the global engineering community. Authors share perspectives on the major engineering challenges that face our world today; identify, discuss, and prioritize engineering solution needs; and establish how these fit into developing global-demand pressures for materials and human resources.