Download Free Engineering Rock Mass Classification Book in PDF and EPUB Free Download. You can read online Engineering Rock Mass Classification and write the review.

Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton's Q and Q' systems, Bieniawski's RMR, Laubscher's MRMR and Hoek's and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design. - Identify the most significant parameters influencing the behaviour of a rock mass - Divide a particular rock mass formulation into groups of similar behaviour, rock mass classes of varying quality - Provide a basis of understanding the characteristics of each rock mass class - Relate the experience of rock conditions at one site to the conditions and experience encountered at others - Derive quantitative data and guidelines for engineering design - Provide common basis for communication between engineers and geologists
This is the first authoritative reference on rock mass classification, consolidating into one handy source information once widely scattered throughout the literature. It includes new, previously unpublished material and case histories, presents the fundamental concepts of classification schemes, and critically appraises their practical application in industrial projects such as tunneling and mining.
Rock Mass Classifications - A Practical Approach in Civil Engineering was written in response to the many unanswered questions regarding this subject. Questions such as - Is Classification reasonably reliable? Can it be successful in crisis management of geohazards? Can a single Classification system be general for all rock structures? Is Classification a scientific approach? Laborious field research was undertaken in the Himalayan mountains by a team of scientists from the Central Mining Research Institute (CMRI), University of Roorkee (UOR), Central Soil and Material Research Station (CSMRS), U.P. Irrigation Research Institute (UPIRI), and Norwegian Geotechnical Institute (NGI) to answer these questions. The results obtained from the research work were systematically compiled to produce this book which bears particular relevance to civil, mining and petroleum engineers and geologists. Endorsements "It is a Handbook of Rock Engineering" - Zhao Jian, School of Civil & Structural Engineering, Nanyang Technological University, Singapore "I came across your new book - Rock Mass Classification, absolutely fantastic" - Subodh K. Jain, U.S.A
Engineering in Rock Masses is a 26-chapter text that deals with the behavior, investigation, and construction of rock masses. The first chapters review the properties, behavior, classification, and occurrence of groundwater in rock masses. The subsequent chapters discuss the stress analysis, exploration, laboratory testing, geophysical methods, and instrumentation in these materials. These topics are followed by discussions of slope stability, rockfall problems, settlement and bearing capacity, subsidence, and seismic movements of rocks and rock masses. This work also evaluates the role of pumping system, ground freezing, grouting, rock anchors, drilling, blasting, and open excavation. The remaining chapters look into the rock masses’ tunneling, underground chambers, shafts, socketed foundations, and retaining structures. This book will be of great value to practicing civil and mining engineers, engineering geologists, and researchers.
Rock Engineering is a valuable reference tool for geotechnical engineers, geologists, consultants, contractors, and advanced students on rock engineering and engineering geology courses.
This book offers a practical reference guide to soft rock mechanics for engineers and scientists. Written by recognized experts, it will benefit professionals, contractors, academics, researchers and students working on rock engineering projects in the fields of civil engineering, mining and construction engineering. Soft Rock Mechanics and Engineering covers a specific subject of great relevance in Rock Mechanics – and one that is directly connected to the design of geotechnical structures under difficult ground conditions. The book addresses practical issues related to the geomechanical properties of these types of rock masses and their characterization, while also discussing advances regarding in situ investigation, safety, and monitoring of geotechnical structures in soft rocks. Lastly, it presents important case histories involving tunnelling, dam foundations, coal and open pit mines and landslides.
The safe and economical construction of tunnels, mines, and other subterranean works depends on the correct choice of support systems to ensure that the excavations are stable. These support systems should be matched to the characterstics of the rock mass and the excavation techniques adopted. Establishing the support requirements, designing support systems and installing these correctly are essential elements in safe underground construction. This is a comprehensive and practical work which also gives access to user-friendly computer programmes which enable the investigation and design of support techniques. Details on how to obtain this software are also included in the book.
Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.
This volume addresses the multi-disciplinary topic of engineering geology and the environment, one of the fastest growing, most relevant and applied fields of research and study within the geosciences. It covers the fundamentals of geology and engineering where the two fields overlap and, in addition, highlights specialized topics that address principles, concepts and paradigms of the discipline, including operational terms, materials, tools, techniques and methods as well as processes, procedures and implications. A number of well known and respected international experts contributed to this authoritative volume, thereby ensuring proper geographic representation, professional credibility and reliability. This superb volume provides a dependable and ready source of information on approximately 300 topical entries relevant to all aspects of engineering geology. Extensive illustrations, figures, images, tables and detailed bibliographic citations ensure that the comprehensively defined contributions are broadly and clearly explained. The Encyclopedia of Engineering Geology provides a ready source of reference for several fields of study and practice including civil engineers, geologists, physical geographers, architects, hazards specialists, hydrologists, geotechnicians, geophysicists, geomorphologists, planners, resource explorers, and many others. As a key library reference, this book is an essential technical source for undergraduate and graduate students in their research. Teachers/professors can rely on it as the final authority and the first source of reference on engineering geology related studies as it provides an exceptional resource to train and educate the next generation of practitioners.