Download Free Engineering Response To Global Climate Change Book in PDF and EPUB Free Download. You can read online Engineering Response To Global Climate Change and write the review.

A clear, concise discussion of today’s hottest topics in climate change, including adapting to climate change and geo-engineering to mitigate the effects of change, Engineering Response to Climate Change, Second Edition takes on the tough questions of what to do and offers real solutions to the practical problems caused by radical changes in the Earth’s climate. From energy consumption and carbon dioxide emissions reduction, to climate-altering technologies, this new edition explores the latest concerns such as acidification of the ocean, energy efficiency, transportation, space solar power, and future and emerging possibilities. The editors set the stage by discussing the separate issues of the emissions of radiatively important atmospheric constituents, energy demand, energy supply, agriculture, water resources, coastal hazards, adaption strategies, and geo-engineering. They explain the difference between the natural and human drivers of climate change and describe how humans have influenced the global climate during past decades. Each chapter concludes with discussion questions, calculations, and possible research topics. See What’s in the Second Edition: New conceptual tools and research necessary for problems associated with fossil fuels Cutting-edge topics such as adaption and geo-engineering The latest concerns such as acidification of the ocean, energy efficiency, transportation, and space solar power Solutions to problems caused by changes in the Earth’s climate So much has changed in the 15 years since the publication of the first edition, that this is, in effect, a completely new book. However, the general theme is the same: the climate energy problem has become largely an engineering problem. With this in mind, the book explores what engineers can do to prevent, mitigate, or adapt to climate change.
A leading scientist argues that we must consider deploying climate engineering technology to slow the pace of global warming. Climate engineering—which could slow the pace of global warming by injecting reflective particles into the upper atmosphere—has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering, is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake. A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.
This book goes beyond the analysis offered by typical works on this subject to propose real solutions to problems caused by changes in the earth's climate. From new ways to cut energy consumption and reduce carbon dioxide emissions to discussions of the possibilities of sea walls and climate-altering technologies, Engineering Response to Global Climate Change presents new conceptual tools and suggests research necessary for correcting and alleviating problems caused by global warming. Engineers are just now being asked to consider the problems of climate change and the possible technological responses. This complete reference covers the whole range of potential impacts of climate change and their engineering solutions. Of special interest is the chapter on geoengineering, which suggests how engineers may someday be able to intervene in planetary processes to reduce the effects of global warming. Edited by a regional director of the National Institute for Global Environmental Change and offering the collective expertise of a team of expert authors, each renowned in his or her field, this book offers thorough coverage of this important topic from an engineering and technology perspective.
The climate is changing as an unintended consequence of human industrialization and consumerism. Recently some scientists and engineers have suggested climate engineering—technological solutions that would intentionally change the climate to make it more hospitable. This approach focuses on large-scale technologies to alleviate the worst effects of anthropogenic climate change. This book considers the moral, philosophical, and religious questions raised by such proposals, bringing Christian theology and ethics into the conversation about climate engineering for the first time. The contributors have different views on whether climate engineering is morally acceptable and on what kinds of climate engineering are most promising and most dangerous, but all agree that religion has a vital role to play in the analysis and decisions called for on this vital issue. Calming the Storm presents diverse perspectives on some of the most vital questions raised by climate engineering: Who has the right to make decisions about such global technological efforts? What have we learned from the decisions that caused the climate to change that might shed light on efforts to reverse that change? What frameworks and metaphors are helpful in thinking about climate engineering, and which are counterproductive? What religious beliefs, practices, and rituals can help people to imagine and evaluate the prospect of engineering the climate?
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
"Autonomy is multidisciplinary, multicultural, and global in its development and applications. Autonomous vehicles rely on communications, artificial intelligence, sensors, virtual and enhanced reality, big data, security, and many other technologies. Each year the annual meeting of the National Academy of Engineering highlights an engineering theme that is quickly developing in the world. The theme of the 2017 meeting was autonomy on land and sea and in the air and space. This publication summarizes the presentations and discussions from the meeting"--Publisher's description.
Climate Adaptation Engineering defines the measures taken to reduce vulnerability and increase the resiliency of built infrastructure. This includes enhancement of design standards, structural strengthening, utilisation of new materials, and changes to inspection and maintenance regimes, etc. The book examines the known effects and relationships of climate change variables on infrastructure and risk-management policies. Rich with case studies, this resource will enable engineers to develop a long-term, self-sustained assessment capacity and more effective risk-management strategies. The book's authors also take a long-term view, dealing with several aspects of climate change. The text has been written in a style accessible to technical and non-technical readers with a focus on practical decision outcomes. - Provides climate scenarios and their likelihoods, hazard modelling (wind, flood, heatwaves, etc.), infrastructure vulnerability, resilience or exposure (likelihood and extent of damage) - Introduces the key concepts needed to assess the risks, costs and benefits of future proofing infrastructures in a changing climate - Includes case studies authored by experts from around the world
A clear, concise discussion of today's hottest topics in climate change, including adapting to climate change and geo-engineering to mitigate the effects of change, Engineering Response to Climate Change, Second Edition takes on the tough questions of what to do and offers real solutions to the practical problems caused by radical changes in the Ea
Transition Engineering: Building a Sustainable Future examines new strategies emerging in response to the mega-issues of global climate change, decline in world oil supply, scarcity of key industrial minerals, and local environmental constraints. These issues pose challenges for organizations, businesses, and communities, and engineers will need to begin developing ideas and projects to implement the transition of engineered systems. This work presents a methodology for shifting away from unsustainable activities. Teaching the Transition Engineering approach and methodology is the focus of the text, and the concept is presented in a way that engineers can begin applying it in their work.
The growing problem of changing environmental conditions caused by climate destabilization is well recognized as one of the defining issues of our time. The root problem is greenhouse gas emissions, and the fundamental solution is curbing those emissions. Climate geoengineering has often been considered to be a "last-ditch" response to climate change, to be used only if climate change damage should produce extreme hardship. Although the likelihood of eventually needing to resort to these efforts grows with every year of inaction on emissions control, there is a lack of information on these ways of potentially intervening in the climate system. As one of a two-book report, this volume of Climate Intervention discusses albedo modification - changing the fraction of incoming solar radiation that reaches the surface. This approach would deliberately modify the energy budget of Earth to produce a cooling designed to compensate for some of the effects of warming associated with greenhouse gas increases. The prospect of large-scale albedo modification raises political and governance issues at national and global levels, as well as ethical concerns. Climate Intervention: Reflecting Sunlight to Cool Earth discusses some of the social, political, and legal issues surrounding these proposed techniques. It is far easier to modify Earth's albedo than to determine whether it should be done or what the consequences might be of such an action. One serious concern is that such an action could be unilaterally undertaken by a small nation or smaller entity for its own benefit without international sanction and regardless of international consequences. Transparency in discussing this subject is critical. In the spirit of that transparency, Climate Intervention: Reflecting Sunlight to Cool Earth was based on peer-reviewed literature and the judgments of the authoring committee; no new research was done as part of this study and all data and information used are from entirely open sources. By helping to bring light to this topic area, this book will help leaders to be far more knowledgeable about the consequences of albedo modification approaches before they face a decision whether or not to use them.