Download Free Engineering Polymer Systems For Improved Drug Delivery Book in PDF and EPUB Free Download. You can read online Engineering Polymer Systems For Improved Drug Delivery and write the review.

Polymers have played a critical role in the rational design and application of drug delivery systems that increase the efficacy and reduce the toxicity of new and conventional therapeutics. Beginning with an introduction to the fundamentals of drug delivery, Engineering Polymer Systems for Improved Drug Delivery explores traditional drug delivery techniques as well as emerging advanced drug delivery techniques. By reviewing many types of polymeric drug delivery systems, and including key points, worked examples and homework problems, this book will serve as a guide to for specialists and non-specialists as well as a graduate level text for drug delivery courses.
Polymers have played a critical role in the rational design and application of drug delivery systems that increase the efficacy and reduce the toxicity of new and conventional therapeutics. Beginning with an introduction to the fundamentals of drug delivery, Engineering Polymer Systems for Improved Drug Delivery explores traditional drug delivery techniques as well as emerging advanced drug delivery techniques. By reviewing many types of polymeric drug delivery systems, and including key points, worked examples and homework problems, this book will serve as a guide to for specialists and non-specialists as well as a graduate level text for drug delivery courses.
Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol examines the combined issues of PEGylation and viable biomaterials as alternatives. With a strong focus on polymeric biomaterials, the book first reviews the major issues associated with PEGylation and its use in vivo. Chapters then focus on alternative polymer systems for drug delivery systems. Finally, nanoparticles and future perspectives are examined. This book is a valuable resource for scientists and researchers in biomaterials, pharmaceuticals and nanotechnology, and all those who wish to broaden their knowledge in this field. Provides a self-contained work for the field of biomaterials for drug delivery Summarizes the current knowledge on PEGylation and strategies for bypassing it Presents research on an important, though under-represented issue in biomaterials Written by a world-class team of research scientists, engineers and clinicians
Emphasizing four major classes of polymers for drug delivery-water-soluble polymers, hydrogels, biodegradable polymers, and polymer assemblies-this reference surveys efforts to adapt, modify, and tailor polymers for challenging molecules such as poorly water-soluble compounds, peptides/proteins, and plasmid DNA.
Applications of Polymers in Drug Delivery, Second Edition, provides a comprehensive resource for anyone looking to understand how polymeric materials can be applied to current, new, and emerging drug delivery applications. Polymers play a crucial role in modulating drug delivery and have been fundamental in the successful development of many novel drug delivery systems. This book describes the development of polymeric systems, ranging from conventional dosage forms to the most recent smart systems. Regulatory and intellectual property aspects as well as the clinical applicability of polymeric drug delivery systems are also discussed. The chapters are organized by specific delivery route, offering methodical and detailed coverage throughout. This second edition has been thoroughly revised to include the latest developments in the field. This is an essential book for researchers, scientists, and advanced students, in polymer science, drug delivery, pharmacology/pharmaceuticals, materials science, tissue engineering, nanomedicine, chemistry, and biology. In industry, this book supports scientists, R&D, and other professionals, working on polymers for drug delivery applications. Explains how polymers can be prepared and utilized for all major drug delivery routes Presents the latest advances, including drug targeting, polymeric micelles and polymersomes, and the delivery of biologicals and nucleic acid therapeutics Includes appendices with in-depth information on pharmaceutical properties of polymers and regulatory aspects
This text is a synthesis of the principles that govern rates of drug transport, reaction, and disappearance in physiological and pathological situations, providing a working foundation for those in the field of drug delivery. The book covers advanced drug delivery and contemporary biomaterials.
Development of new drug molecules is costly and requires longitudinal, wide-ranging studies; therefore, designing advanced pharmaceutical formulations for existing and well-known drugs seems to be an attractive device for the pharmaceutical industry. Properly formulated drug delivery systems can improve pharmacological activity, efficacy and safety of the active substances. Advanced materials applied as pharmaceutical excipients in designing drug delivery systems can help solve problems concerning the required drug release—with the defined dissolution rate and at the determined site. Novel drug carriers enable more effective drug delivery, with improved safety and with fewer side effects. Investigations concerning advanced materials represent a rapidly growing research field in material/polymer science, chemical engineering and pharmaceutical technology. Exploring novel materials or modifying and combining existing ones is now a crucial trend in pharmaceutical technology. Eleven articles included in the the Special Issue “Advanced Materials in Drug Release and Drug Delivery Systems” present the most recent insights into the utilization of different materials with promising potential in drug delivery and into different formulation approaches that can be used in the design of pharmaceutical formulations.
This title examines new drug delivery strategies utilizing intelligent polymeric materials that perform sensing, processing and response functions. The authors demonstrate the design of polymers with integrated intelligent functions to achieve site specific and temporally controlled drug delivery, specifically for pharmaceutical applications. Using stimuli-responsive polymers as molecular devices for self-regulation and externally modulated drug delivery systems are reviewed from multi-disciplinary perspectives, employing materials science and bio-engineering as an important foundation.
Engineering Drug Delivery Systems is an essential resource on a variety of biomaterials engineering approaches for creating drug delivery systems that have market and therapeutic potential. The book comprehensively discusses recent advances in the fields of biomaterials and biomedical sciences in relation to drug delivery. Chapters provide a detailed introduction to various engineering approaches in designing drug delivery systems, delve into the engineering of body functions, cover the selection, design and evaluation of biomaterials, and discuss the engineering of colloids as drug carriers. The book's final chapters address the engineering of implantable drug delivery systems and advances in drug delivery technology. This book is an invaluable resource for drug delivery, materials scientists and bioengineers within the pharmaceutical industry. Examines the properties and synthesis of biomaterials for successful drug delivery Discusses the important connection between drug delivery and tissue engineering Includes techniques and approaches applicable to a wide range of users Reviews innovative technologies in drug delivery systems such as 3-D printed devices for drug delivery
First of all, I would like to share the great pleasure of the successful five-day symposium with every participant in the 5th Iketani Conference which was held in Kagoshima from April1S (Tuesday) to 22 (Saturday), 1995. Outstanding speakers enthusiastically presented their up-to-the-minute results. Relatively little time was allotted for each presentation to ensure asdnuch time· as possible for intensive discussions on the particular topics that had just been p~esented: I was delighted to see that the lectures were of high quality, and the discu,ssionswere lively, exciting, and productive in a congenial atmosphere. We also had 92 papers in the poster ·session, in which young (and relatively young) scientists made every effort to present the novel results of their research in advanced biomaterials and drug delivery systems (DDS). I believe some of the research is most promising and will become noteworthy in the twenty-first century. It was a privilege for me to deliver a lecture at the special session of the symposium. In my introductory remarks, I pointed out five key terms in multifaceted biomaterials research: materials design, concept or methodology, devices, properties demanded, and fundamentals. I am confident that innovative progress in device manufacturing for end-use, e.g., artificial organs, vascular grafts, and DDS, can be brought about only through properly designed advanced materials that exhibit the desired functionality at the interface with any living body.