Download Free Engineering Materials Book in PDF and EPUB Free Download. You can read online Engineering Materials and write the review.

This book gives a broad introduction to the properties of materials used in engineering applications, and is intended to provide a course in engineering materials for students with no previous background in the subject.
This introductory text is intended to provide undergraduate engineering students with the background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials selection in design. A computer diskette is included.
A one-stop desk reference, for engineers involved in the use of engineered materials across engineering and electronics, this book will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the field. Material ranges from basic to advanced topics, including materials and process selection and explanations of properties of metals, ceramics, plastics and composites. A hard-working desk reference, providing all the essential material needed by engineers on a day-to-day basis Fundamentals, key techniques, engineering best practice and rules-of-thumb together in one quick-reference sourcebook Definitive content by the leading authors in the field, including Michael Ashby, Robert Messler, Rajiv Asthana and R.J. Crawford
Selection and Use of Engineering Materials, Second Edition covers the substantial development in the selection and application of materials and of associated materials. This book is organized into four parts encompassing 20 chapters that also consider the advances in materials databases and computer programs. The first part deals with the motivation, cost basis, service requirements, failure analysis, specifications, and quality control of engineering materials. The second part describes the mechanical properties of these materials, including static strength, toughness, stiffness, fatigue, creep, and temperature resistance. The third part examines the selection requirements for surface durability, such as corrosion and wear resistance. This part also explores the relationship between materials selection and materials processing, as well as the formalization of selection procedures. The fourth part provides some case studies in materials selection. This book will prove useful to materials scientists and practicing engineers.
A comprehensive reference on the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials. Section 1, General Information and Data, contains information applicable both to polymers and to ceramics and glasses. It includes an illustrated glossary, a collection of engineering tables and data, and a guide to materials selection. Sections 2 through 7 focus on polymeric materials--plastics, elastomers, polymer-matrix composites, adhesives, and sealants--with the information largely updated and expanded from the first three volumes of the Engineered Materials Handbook. Ceramics and glasses are covered in Sections 8 through 12, also with updated and expanded information. Annotation copyright by Book News, Inc., Portland, OR
Civil Engineering Materials explains why construction materials behave the way they do. It covers the construction materials content for undergraduate courses in civil engineering and related subjects and serves as a valuable reference for professionals working in the construction industry. The book concentrates on demonstrating methods to obtain, analyse and use information rather than focusing on presenting large amounts of data. Beginning with basic properties of materials, it moves on to more complex areas such as the theory of concrete durability and corrosion of steel. Discusses the broad scope of traditional, emerging, and non-structural materials Explains what material properties such as specific heat, thermal conductivity and electrical resistivity are and how they can be used to calculate the performance of construction materials. Contains numerous worked examples with detailed solutions that provide precise references to the relevant equations in the text. Includes a detailed section on how to write reports as well as a full section on how to use and interpret publications, giving students and early career professionals valuable practical guidance.
Constitutive Modeling of Engineering Materials provides an extensive theoretical overview of elastic, plastic, damage, and fracture models, giving readers the foundational knowledge needed to successfully apply them to and solve common engineering material problems. Particular attention is given to inverse analysis, parameter identification, and the numerical implementation of models with the finite element method. Application in practice is discussed in detail, showing examples of working computer programs for simple constitutive behaviors. Examples explore the important components of material modeling which form the building blocks of any complex constitutive behavior. Addresses complex behaviors in a wide range of materials, from polymers, to metals and shape memory alloys Covers constitutive models with both small and large deformations Provides detailed examples of computer implementations for material models
Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.
Civil Engineering Materials: From Theory to Practice presents the state-of-the-art in civil engineering materials, including the fundamental theory of materials needed for civil engineering projects and unique insights from decades of large-scale construction in China. The title includes the latest advances in new materials and techniques for civil engineering, showing the relationship between composition, structure and properties, and covering ultra-high-performance concrete and self-compacting concrete developed in China. This book provides comprehensive coverage of the most commonly used, most advanced materials for use in civil engineering. This volume consists of eight chapters covering the fundamentals of materials, inorganic cementing materials, Portland cement concrete, bricks, blocks and building mortar, metal, wood, asphalt and polymers. Describes the most commonly used civil engineering materials and updates on advanced materials Presents advanced materials and their applications in civil engineering Looks at engineering problems pragmatically from both a materials and civil engineering perspective Gives knowledge and guidance rooted in decades of experience in Chinese civil engineering projects Contextualises knowledge of civil engineering materials in infrastructure construction, including high-speed rail
CD-ROM contains: Dynamic phase diagram tool -- Over 30 animations of concepts from the text -- Photomicrographs from the text.