Download Free Engineering Geology Of Waste Disposal Book in PDF and EPUB Free Download. You can read online Engineering Geology Of Waste Disposal and write the review.

"This book is based on papers presented to the 29th Annual Conference of the Engineering Group of the Geological Society, which was held at the School of Engineering, University of Wales, Cardiff, between 6 and 9 September 1993."--Pref.
Emphasizing the importance of geology in waste mangement, this text provides students with an understanding of the principles of hazardous waste management, integrating key concepts from geology and geotechnics throughout.
This book will address concepts and techniques for preparation and disposal of low- (LLW) and intermediate-level (ILW) radioactive waste from the nuclear industry, the weapons industry, university labs, research institutes, and from the commercial industry. It will aid decision-makers in finding optimal technical/economical solutions, including how site investigations, design, construction, identification and selection of construction materials (clay and concrete), and monitoring can be made. It will also examine techniques for isolating soil and rock contaminated by leaking nuclear plants and from damaged nuclear reactors such as those at the Fukushima and Chernobyl nuclear plants.
Earth scientists and geotechnical engineers are increasingly challenged to solve environmental problems related to waste disposal facilities and cleanup of contaminated sites. The effort has given rise to a new discipline of specialists in the field of environmental geotechnology. To be effective, environmental geotechnologists must not only be armed with the traditional knowledge of fields such as geology and civil engineering, but also be knowledgeable of principles of hydrogeology, chemistry, and biological processes. In addition, the environmental geotechnologist must be completely up to date on the often complex cadre of local and national regulations, must comprehend the often complex legal issues and sometimes mind-boggling financial impli cations of a project, and must be able to communicate effectively with a host of other technical specialists, regulatory officials, attorneys, local land owners, journalists, and others. The field of environmental geo technology will no doubt continue to offer unique challenges. The purpose of this book is to summarize the current state of practice in the field of environmental geotechnology. Part One covers broadly applicable principles such as hydrogeology, geochemistry, and con taminant transport in soil and rock. Part Two describes in detail the underlying principles for design and construction of new waste disposal facilities. Part Three covers techniques for site remediation. Finally, Part Four addresses the methodologies for monitoring. The topics of 'waste disposal' and 'site remediation' are extra ordinarily broad.
Composed of the proceedings of a symposium on engineering geology and the environment, held in Athens in June, 1997, this work provides a survey of trends in engineering geology, and an interdisciplinary collaboration with hydrogeology, geochemistry, geomorphology, and soil and rock mechanics.
Geologic Aspects of Hazardous Waste Management brings together technical, legislative, regulatory, and business aspects of hazardous waste issues as they pertain to preventing, assessing, containing, and remediating soil and groundwater contamination. The book emphasizes how subsurface geologic and hydrogeologic conditions affect the decision-making process, and it focuses on critical issues facing industry, government, and the public. The book is excellent for consultants, project managers, regulators, geologists, geophysicists, hydrologists, hydrogeologists, risk assessors, environmental engineers, chemists, toxicologists, and environmental lawyers.
This monograph contains the proceedings of the 9th Annual Symposium on Geo-aspects of Waste Management, February 1-6, 1987 held at Colorado State University, Fort Collins, Colorado.
The perception of radioactive waste as a major problem for the industrial world has developed only recently. Four decades ago the disposal of such waste was regarded as a relatively minor matter. Those were the heady days when nuclear fission seemed the answer to the world's energy needs: the two wartime bombs had demonstrated its awesome power, and now it was to be harnessed for the production of electricity, the excavation of canals, even the running of cars and airplanes. In all applications of fission some waste containing radioactive elements would be generated of course, but it seemed only a trivial annoyance, a problem whose solution could be deferred until the more exciting challenges of constructing reactors and devising more efficient weapons had been mastered. So waste accumulated, some in tanks and some buried in shallow trenches. These were recognized as only temporary, makeshift measures, because it was known that the debris would be hazardous to its surroundings for many thousands of years and hence that more permanent disposal would someday be needed. The difficulty of accomplishing this more lasting disposal only gradually became apparent. The difficulty has been compounded by uncertainty about the physiological effects oflow-Ievel radiation, by the inadequacy of detailed knowledge about the behavior of engineered and geologic materials over long periods under unusual conditions, and by the sensitization of popular fears about radiation in all its forms following widely publicized reactor accidents and leaks from waste storage sites.
Geologic Disposal of High-Level Radioactive Waste examines the fundamental knowledge and conditions to be considered and applied by planners and other professionals when establishing national repository concepts, and constructing repositories for the long-term isolation of highly radioactive waste from surrounding crystalline rock. It emphasizes the important roles of structural geology, hydrogeology, hydrochemistry, and construction techniques. It specifically examines the disposal of steel canisters with spent reactor fuel in mined repositories (MR) at medium-depth, and in very deep boreholes (VDH). While disposal in mined repositories has been widely tested, the option of placing high-level radioactive waste in deep boreholes has been considered in the US, UK, and elsewhere in Europe, but has not yet been tested on a broad scale. This book examines the possibility of safe disposal for very long periods, proposing that the high salt content and density of groundwater at large depths are such that potentially contaminated water would not rise high enough to affect the more shallow biosphere. Features: Presents the best practices for disposal of spent fuel from nuclear reactors. Assesses waste isolation capacities in short- and long-term perspectives, and the associated risks. Describes site selection principles and the economics of construction of different types of repositories. Includes an appendix which provides the latest international recommendations and guidelines concerning the disposal of highly radioactive waste.