Download Free Engineering Geology For Underground Works Book in PDF and EPUB Free Download. You can read online Engineering Geology For Underground Works and write the review.

The construction of tunnels involves the resolution of various complex technical problems depending on the geological and geological-environmental context in which the work fits. Only a careful analysis of all the geological and geological-environmental issues and a correct reconstruction of the conceptual model can lead to optimal design solutions from all points of view (including financial) and ensure the safety of workers during the construction and users in the operation phase. It was therefore felt that there was a need to collect in one volume the state of current knowledge about: all the geological and environmental issues related to the construction of underground works the different methodologies used for the reconstruction of the conceptual model the different risk typologies that it is possible to encounter or that can arise from tunnel construction, and the most important risk assessment, management and mitigation methodologies that are used in tunneling studies.
Professionals and students in any geology-related field will find this an essential reference. It clearly and systematically explains underground engineering geology principles, methods, theories and case studies. The authors lay out engineering problems in underground rock engineering and how to study and solve them. The book specially emphasizes mechanical and hydraulic couplings in rock engineering for wellbore stability, mining near aquifers and other underground structures where inflow is a problem.
Underground Engineering: Planning, Design, Construction and Operation of the Underground Space provides the author's vast experience as both an academic and practitioner. It covers Planning, Design, Construction and the Operation of Underground Structures. Targeted at young professionals, students and researchers new to the field, the book contains examples, illustrations and cases from diverse underground uses, from roads to disposal facilities. Sections cover the history of the field, upcoming challenges, the planning stage of the subsurface use, including financial planning and reliability forecasting, site investigation, instrumentation and modeling, construction techniques and challenges, and more. Young professionals in this area will benefit from the updated and complete overview of Underground Engineering. Students will find the examples and cases particularly didactic. Richly illustrated, this book is an excellent resource for all involved in the development of the underground space. - Offers a complete introduction to the area, including planning, design, construction and the operation of underground structures - Assumes little previous knowledge from readers - Presents the most recent techniques and future technical trends - Richly illustrated and packed with examples to help readers understand the fundamentals of the area
The book provides a new, global, updated, thorough, clear and practical risk-based approach to tunnelling design and construction methods, and discusses detailed examples of solutions applied to relevant case histories. It is organized in three sequential and integrated volumes: Volume 1: Concept – Basic Principles of Design Volume 2: Construction – Methods, Equipment, Tools and Materials Volume 3: Case Histories and Best Practices The book covers all aspects of tunnelling, giving useful and practical information about design (Volume 1), construction (Volume 2) and best practices (Volume 3). It provides the following features and benefits: updated vision on tunnelling design, tools, materials and construction balanced mix of theory, technology and applied experience different and harmonized points of view from academics, professionals and contractors easy consultation in the form of a handbook risk-oriented approach to tunnelling problems. The tunnelling industry is amazingly widespread and increasingly important all over the world, particularly in developing countries. The possible audience of the book are engineers, geologists, designers, constructors, providers, contractors, public and private customers, and, in general, technicians involved in the tunnelling and underground works industry. It is also a suitable source of information for industry professionals, senior undergraduate and graduate students, researchers and academics.
This proceedings volume contains over 300 papers on rock mechanics and engineering with contributors from all over Asia and many other parts of the world. Seven keynote papers summarize the state-of-the-art in rock engineering including topics such as underground rock caverns. The technical papers cover a wide range of rock mechanics and engineering topics: rock tunnels, caverns, mining, rock slopes and dams, rock blasting, rock burst and failure, rock properties, rock mass, rock joints, and block theory. Numerous valuable rock engineering case studies are also reported.This volume should serve as a useful reference for the engineers and researchers in rock mechanics and rock engineering.
This book examines geological and environmental issues affecting construction of underground works, methods for reconstruction of the conceptual model and important risk assessment, management and mitigation methods that are used in tunneling studies.
Engineering Geology attempts to provide an understanding of relations between the geology of a building site and the engineering structure. It presents examples taken from real-life experience and practice to provide evidence for the significance of engineering geology in planning, design, construction, and maintenance of engineering structures. The book begins with an introduction of geological investigations, distinguishing between the reconnaissance investigation, the detailed investigation, and investigation during construction. It then explains the significance of geological maps and sections; the mechanical behavior of rocks; subsurface investigation for engineering construction; and geophysical methods. The remaining chapters discuss the physical and chemical weathering of rocks; slope movements; and geological investigations for buildings, roads and railways, tunnels, and hydraulic structures. This book is intended particularly for civil engineering students and students of engineering geology in the university faculties of natural sciences. It describes geological features so as to be comprehensible to Technical College students and to explain construction problems intelligibly for geology students. The book will also be of assistance to planners, civil engineers, and graduate engineering geologists.
The Engineering Group of the Geological Society Working Party brought together experts in glacial and periglacial geomorphology, Quaternary history, engineering geology and geotechnical engineering to establish best practice when working in former glaciated and periglaciated environments. The Working Party addressed outdated terminology and reviewed the latest academic research to provide an up-to-date understanding of glaciated and periglaciated terrains. This transformative, state-of-the-art volume is the outcome of five years of deliberation and synthesis by the Working Party. This is an essential reference text for practitioners, students and academics working in these challenging ground conditions. The narrative style, and a comprehensive glossary and photo-catalogue of active and relict sediments, structures and landforms make this material relevant and accessible to a wide readership.
Geology – Basics for Engineers (second edition) presents the physical and chemical characteristics of the Earth, the nature and the properties of rocks and unconsolidated deposits/sediments, the action of water, how the Earth is transformed by various phenomena at different scales of time and space. The book shows the engineer how to take geological conditions into account in their projects, and how to exploit a wide range of natural resources in an intelligent way, reduce geological hazards, and manage subsurface pollution. This second edition has been fully revised and updated. Through a problem-based learning approach, this instructional text imparts knowledge and practical experience to engineering students (undergraduate and graduate level), as well as to experts in the fields of civil engineering, environmental engineering, earth sciences, architecture, land and urban planning. Free digital supplements to the book, found on the book page, contain solutions to the problems and animations that show additional facets of the living Earth. The original French edition of the book (2007) won the prestigious Roberval Prize, an international contest organized by the University of Technology of Compiegne in collaboration with the General Council of Oise, France. Geology, Basics for Engineers was selected out of a total of 110 candidates. The jury praised the book as a "very well conceived teaching textbook" and underscored its highly didactic nature, as well as the excellent quality of its illustrations. Features: Offers an exhaustive outline of the methods and techniques used in geology, with a study of the nature and properties of the principal soils and rocks Helps students understand how geological conditions should be taken into account by the engineer by taking a problem-solving approach Contains extensive figures and examples, solutions to probems, and illustrative animations Presents a highly didactic and synthetic work intended for engineering students as well as experts in civil engineering, environmental engineering, the earth sciences, and architecture
No engineering structure can be built on the ground or within it without the influence of geology being experienced by the engineer. Yet geology is an ancillary subject to students of engineering and it is therefore essential that their training is supported by a concise, reliable and usable text on geology and its relationship to engineering. In this book all the fundamental aspects of geology are described and explained, but within the limits thought suitable for engineers. It describes the structure of the earth and the operation of its internal processes, together with the geological processes that shape the earth and produce its rocks and soils. It also details the commonly occurring types of rock and soil, and many types of geological structure and geological maps. Care has been taken to focus on the relationship between geology and geomechanics, so emphasis has been placed on the geological processes that bear directly upon the composition, structure and mechanics of soil and rocks, and on the movement of groundwater. The descriptions of geological processes and their products are used as the basis for explaining why it is important to investigate the ground, and to show how the investigations may be conducted at ground level and underground. Specific instruction is provided on the relationship between geology and many common activities undertaken when engineering in rock and soil.