Download Free Engineering Computational Technology Book in PDF and EPUB Free Download. You can read online Engineering Computational Technology and write the review.

Computational Methods and Production Engineering: Research and Development is an original book publishing refereed, high quality articles with a special emphasis on research and development in production engineering and production organization for modern industry. Innovation and the relationship between computational methods and production engineering are presented. Contents include: Finite Element method (FEM) modeling/simulation; Artificial neural networks (ANNs); Genetic algorithms; Evolutionary computation; Fuzzy logic; neuro-fuzzy systems; Particle swarm optimization (PSO); Tabu search and simulation annealing; and optimization techniques for complex systems. As computational methods currently have several applications, including modeling manufacturing processes, monitoring and control, parameters optimization and computer-aided process planning, this book is an ideal resource for practitioners. - Presents cutting-edge computational methods for production engineering - Explores the relationship between applied computational methods and production engineering - Presents new innovations in the field - Edited by a key researcher in the field
The book is a collection of high-quality peer-reviewed research papers presented at the International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech2021) held at Zlatibor, Serbia, from June 29 to July 2, 2021. The book discusses a wide variety of industrial, engineering, and scientific applications of the engineering techniques. Researchers from academia and industry present their original work and exchange ideas, experiences, information, techniques, applications, and innovations in the field of mechanical engineering, materials science, chemical and process engineering, experimental techniques, numerical methods, and new technologies.
The book is designed to serve as a textbook for courses offered to graduate and upper-undergraduate students enrolled in mechanical engineering. The book attempts to make students with mathematical backgrounds comfortable with numerical methods. The book also serves as a handy reference for practicing engineers who are interested in applications. The book is written in an easy-to-understand manner, with the essence of each numerical method clearly stated. This makes it easy for professional engineers, students, and early career researchers to follow the material presented in the book. The structure of the book has been modeled accordingly. It is divided into four modules: i) solution of a system of equations and eigenvalues which includes linear equations, determining eigenvalues, and solution of nonlinear equations; ii) function approximations: interpolation, data fit, numerical differentiation, and numerical integration; iii) solution of ordinary differential equations—initial value problems and boundary value problems; and iv) solution of partial differential equations—parabolic, elliptic, and hyperbolic PDEs. Each section of the book includes exercises to reinforce the concepts, and problems have been added at the end of each chapter. Exercise problems may be solved by using computational tools such as scientific calculators, spreadsheet programs, and MATLAB codes. The detailed coverage and pedagogical tools make this an ideal textbook for students, early career researchers, and professionals.
By using computer simulations in research and development, computational science and engineering (CSE) allows empirical inquiry where traditional experimentation and methods of inquiry are difficult, inefficient, or prohibitively expensive. The Handbook of Research on Computational Science and Engineering: Theory and Practice is a reference for interested researchers and decision-makers who want a timely introduction to the possibilities in CSE to advance their ongoing research and applications or to discover new resources and cutting edge developments. Rather than reporting results obtained using CSE models, this comprehensive survey captures the architecture of the cross-disciplinary field, explores the long term implications of technology choices, alerts readers to the hurdles facing CSE, and identifies trends in future development.
This book explores applications of computational intelligence in key and emerging fields of engineering, especially with regard to condition monitoring and fault diagnosis, inverse problems, decision support systems and optimization. These applications can be beneficial in a broad range of contexts, including: water distribution networks, manufacturing systems, production and storage of electrical energy, heat transfer, acoustic levitation, uncertainty and robustness of infinite-dimensional objects, fatigue failure prediction, autonomous navigation, nanotechnology, and the analysis of technological development indexes. All applications, mathematical and computational tools, and original results are presented using rigorous mathematical procedures. Further, the book gathers contributions by respected experts from 22 different research centers and eight countries: Brazil, Cuba, France, Hungary, India, Japan, Romania and Spain. The book is intended for use in graduate courses on applied computation, applied mathematics, and engineering, where tools like computational intelligence and numerical methods are applied to the solution of real-world problems in emerging areas of engineering.
Artificial intelligence has been applied to many areas of science and technology, including the power and energy sector. Renewable energy in particular has experienced the tremendous positive impact of these developments. With the recent evolution of smart energy technologies, engineers and scientists working in this sector need an exhaustive source of current knowledge to effectively cater to the energy needs of citizens of developing countries. Computational Methodologies for Electrical and Electronics Engineers is a collection of innovative research that provides a complete insight and overview of the application of intelligent computational techniques in power and energy. Featuring research on a wide range of topics such as artificial neural networks, smart grids, and soft computing, this book is ideally designed for programmers, engineers, technicians, ecologists, entrepreneurs, researchers, academicians, and students.
This book gathers state-of-the-art research in computational engineering and bioengineering to facilitate knowledge exchange between various scientific communities. Computational engineering (CE) is a relatively new discipline that addresses the development and application of computational models and simulations often coupled with high-performance computing to solve complex physical problems arising in engineering analysis and design in the context of natural phenomena. Bioengineering (BE) is an important aspect of computational biology, which aims to develop and use efficient algorithms, data structures, and visualization and communication tools to model biological systems. Today, engineering approaches are essential for biologists, enabling them to analyse complex physiological processes, as well as for the pharmaceutical industry to support drug discovery and development programmes.
This book discusses questions of numerical solutions of applied problems on parallel computing systems. Nowadays, engineering and scientific computations are carried out on parallel computing systems, which provide parallel data processing on a few computing nodes. In the development of up-to-date applied software, this feature of computers must be taken into account for the maximum efficient usage of their resources. In constructing computational algorithms, we should separate relatively independent subproblems in order to solve them on a single computing node.
The emergence of mechatronics has advanced the engineering disciplines, producing a plethora of useful technical systems. Advanced Engineering and Computational Methodologies for Intelligent Mechatronics and Robotics presents the latest innovations and technologies in the fields of mechatronics and robotics. These innovations are applied to a wide range of applications for robotic-assisted manufacturing, complex systems, and many more. This publication is essential to bridge the gap between theory and practice for researchers, engineers, and practitioners from academia to government.