Download Free Engineered Targeted Cancer Immunotherapies Book in PDF and EPUB Free Download. You can read online Engineered Targeted Cancer Immunotherapies and write the review.

Delivery Technologies for Immuno-Oncology: Volume 1: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy examines the challenges of delivering immuno-oncology therapies. Immuno-oncology (IO) is a growing field of medicine at the interface of immunology and cancer biology leading to development of novel therapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) and immune checkpoint blockade antibodies, that are clinically approved approaches for cancer therapy. Although currently approved IO approaches have shown tremendous promise for select types of cancers, broad application of IO strategies could even further improve the clinical success, especially for diseases such as pancreatic cancer, brain tumors where the success of IO so far has been limited. Nanotechnology-based targeted delivery strategies could improve the delivery efficiency of IO agents as well as provide additional avenues for novel therapeutic and vaccination strategies. Additionally, a number of locally-administered immunogenic scaffolds and therapeutic strategies, such as the use of STING agonist, could benefit from rationally designed biomaterials and delivery approaches. Delivery Technologies for Immuno-Oncology: Volume 1: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy creates a comprehensive treaty that engages the scientific and medical community who are involved in the challenges of immunology, cancer biology, and therapeutics with possible solutions from the nanotechnology and drug delivery side. - Comprehensive treaty covering all aspects of immuno-oncology (IO) - Novel strategies for delivery of IO therapeutics and vaccines - Forecasting on the future of nanotechnology and drug delivery for IO
Immunotherapy is a form of cancer therapy that harnesses the body's immune system to destroy cancer cells. In recent years, immunotherapies have been developed for several cancers, including advanced melanoma, lung cancer, and kidney cancer. In some patients with metastatic cancers who have not responded well to other treatments, immunotherapy treatment has resulted in complete and durable responses. Given these promising findings, it is hoped that continued immunotherapy research and development will produce better cancer treatments that improve patient outcomes. With this promise, however, there is also recognition that the clinical and biological landscape for immunotherapies is novel and not yet well understood. For example, adverse events with immunotherapy treatment are quite different from those experienced with other types of cancer therapy. Similarly, immunotherapy dosing, therapeutic responses, and response time lines are also markedly different from other cancer therapies. To examine these challenges and explore strategies to overcome them, the National Academies of Sciences, Engineering, and Medicine held a workshop in February and March of 2016. This report summarizes the presentations and discussions from the workshop.
The ability to genetically engineer oncolytic viruses in order to minimize side effects and improve the selective targeting of tumor cells has opened up novel opportunities for treating cancer. Understanding the mechanisms involved and the complex interaction between the viruses and the immune system will undoubtedly help guide the development of new strategies. Theranostic biomarkers to monitor these therapies in clinical trials serve an important need in this innovative field and demand further research.
Providing practical and proven solutions for antibody-drug conjugate (ADC) drug discovery success in oncology, this book helps readers improve the drug safety and therapeutic efficacy of ADCs to kill targeted tumor cells. • Discusses the basics, drug delivery strategies, pharmacology and toxicology, and regulatory approval strategies • Covers the conduct and design of oncology clinical trials and the use of ADCs for tumor imaging • Includes case studies of ADCs in oncology drug development • Features contributions from highly-regarded experts on the frontlines of ADC research and development
Part 1: Intratumoral Signatures Associated With Immune Responsiveness
Rapid progress in the definition of tumor antigens, and improved immunization methods, bring effective cancer vaccines within reach. In this wide-ranging survey, leading clinicians and scientists review therapeutic cancer vaccine strategies against a variety of diseases and molecular targets. Intended for an interdisciplinary readership, their contributions cover the rationale, development, and implementation of vaccines in human cancer treatment, with specific reference to cancer of the cervix, breast, colon, bladder, and prostate, and to melanoma and lymphoma. They review target identification, delivery vectors and clinical trial design. The book begins and ends with lucid overviews from the editors, that discuss the most recent developments.
In this book, leading experts in cancer immunotherapy join forces to provide a comprehensive guide that sets out the main principles of oncoimmunology and examines the latest advances and their implications for clinical practice, focusing in particular on drugs with FDA/EMA approvals and breakthrough status. The aim is to deliver a landmark educational tool that will serve as the definitive reference for MD and PhD students while also meeting the needs of established researchers and healthcare professionals. Immunotherapy-based approaches are now inducing long-lasting clinical responses across multiple histological types of neoplasia, in previously difficult-to-treat metastatic cancers. The future challenges for oncologists are to understand and exploit the cellular and molecular components of complex immune networks, to optimize combinatorial regimens, to avoid immune-related side effects, and to plan immunomonitoring studies for biomarker discovery. The editors hope that this book will guide future and established health professionals toward the effective application of cancer immunology and immunotherapy and contribute significantly to further progress in the field.
In this book we provide insights into liver – cancer and immunology. Experts in the field provide an overview over fundamental immunological questions in liver cancer and tumorimmunology, which form the base for immune based approaches in HCC, which gain increasing interest in the community due to first promising results obtained in early clinical trials. Hepatocellular carcinoma (HCC) is the third most common cause of cancer related death in the United States. Treatment options are limited. Viral hepatitis is one of the major risk factors for HCC, which represents a typical “inflammation-induced” cancer. Immune-based treatment approaches have revolutionized oncology in recent years. Various treatment strategies have received FDA approval including dendritic cell vaccination, for prostate cancer as well as immune checkpoint inhibition targeting the CTLA4 or the PD1/PDL1 axis in melanoma, lung, and kidney cancer. Additionally, cell based therapies (adoptive T cell therapy, CAR T cells and TCR transduced T cells) have demonstrated significant efficacy in patients with B cell malignancies and melanoma. Immune checkpoint inhibitors in particular have generated enormous excitement across the entire field of oncology, providing a significant benefit to a minority of patients.
A review of the interdisciplinary field of synthetic biology, from genome design to spatial engineering. Written by an international panel of experts, Synthetic Biology draws from various areas of research in biology and engineering and explores the current applications to provide an authoritative overview of this burgeoning field. The text reviews the synthesis of DNA and genome engineering and offers a discussion of the parts and devices that control protein expression and activity. The authors include information on the devices that support spatial engineering, RNA switches and explore the early applications of synthetic biology in protein synthesis, generation of pathway libraries, and immunotherapy. Filled with the most recent research, compelling discussions, and unique perspectives, Synthetic Biology offers an important resource for understanding how this new branch of science can improve on applications for industry or biological research.