Download Free Engineered Nanoparticles And The Environment Book in PDF and EPUB Free Download. You can read online Engineered Nanoparticles And The Environment and write the review.

Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies
Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies
This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.
Exposure to Engineered Nanomaterials in the Environment provide a new, holistic framework for testing and evaluating the potential benefits and risks of engineered nanomaterials (ENMs), including their potential socioeconomic impacts, ethical issues and consumers’ expectations and fears. The book covers nanomaterial presence in various environments, agroecosystems and other areas within the human sphere of actions. The book includes sections on (i) Chemical, physical and biological properties, (ii) Presence and diffusion of ENMs in human environments, agriculture, food and drug products, (iii) ENMs as a pillar in biological and medical research, and (iv) Social and regulatory issues emerging from years of application. The book is designed to increase awareness to key end-users and stakeholders, including food producers and processors, industry, representatives of society and consumers, and those looking to implement an accurate and effective risk analysis procedure that promotes the sustainable use of nanotechnology. Assesses both the positive and negative impacts of engineered nanomaterials in the environment Shows how engineered nanomaterials are used in agricultural environments, food products, drugs and cosmetics Discusses the unique properties of a range of engineered nanomaterials that lead to their environmental effects
An increased understanding of the environmental and human healthimpacts of engineered nanoparticles is essential for theresponsible development of nanotechnology and appropriateevidence-based policy and guidelines for risk assessment.Presenting the latest advances in the field from a variety ofscientific disciplines, this book offers a comprehensive overviewof this challenging, inter-disciplinary research area. Topics covered include: The properties, preparation and applications ofnanomaterials Characterization and analysis of manufacturednanoparticles The fate and behaviour of nanomaterials in aquatic, terrestrialand atmospheric environments Ecotoxicology and human toxicology of manufacturednanoparticles Occupational health and exposure of nanomaterials Risk assessment and global regulatory and policy responses Understanding the behaviour and impacts of nanotechnology in theenvironment and in human health is a daunting task and manyquestions remain to be answered. Environmental and Human HealthImpacts of Nanotechnology will serve as a valuable resource foracademic researchers in nanoscience and nanotechnology,environmental science, materials science and biology, as well asfor scientists in industry, regulators and policy makers.
This text presents the most current knowledge on the environmental impact of materials and products developed using nanotechnology. Although nanomaterials are revolutionising electronics, medicine, transportation and many other industries, they pose risks to living beings and ecosystems that are barely understood. Leading researchers here consider the science of nanomaterials, their behaviour in the environment, risk assessment and toxicology, and the future of nanomaterials.
Engineered Nanoparticles: Structure, Properties and Mechanisms of Toxicity is an indispensable introduction to engineered nanomaterials (ENM) and their potential adverse effects on human health and the environment. Although research in the area of pharmacology and toxicology of ENM is rapidly advancing, a possible correlation between their physicochemical properties and biomedical properties or toxicity is not yet fully understood. This understanding is essential to develop strategies for the safe applications and handling of ENM. The book comprehensively defines the current understanding of ENM toxicity, first describing these materials and their physicochemical properties, and then discussing the toxicological theory and methodology before finally demonstrating the potential impact of ENM on the environment and human health. It represents an essential reference for students and investigators in toxicology, pharmacology, chemistry, material sciences, medicine, and those in related disciplines who require an introduction to ENM and their potential toxicological effects. Provides state-of-the-art physicochemical descriptions and methodologies for the characterization of engineered nanomaterials (ENM) Describes the potential toxicological effects of ENM and the nanotoxicological mechanisms of action Presents how to apply theory to practice in a public health and risk assessment setting
Nanomaterials can be synthesized by physical, chemical, and biological methods; however, the latter technique is preferred as it is eco-friendly, non-toxic, and cost-effective. The green synthesized nanomaterials have been found to be more efficient with potential applications in diverse fields. It is crucial to explore green synthesized nanomaterials and the applications that can be made in order to support water remediation, pharmaceuticals, food processing, construction, and more. The Handbook of Research on Green Synthesis and Applications of Nanomaterials provides a multidisciplinary approach to the awareness of using non-toxic, eco-friendly, and economical green techniques for the synthesis of various nanomaterials, as well as their applications across a variety of fields. Covering topics such as antimicrobial applications, environmental remediation, and green synthesis, this book acts as a thorough reference for engineers, nanotechnology professionals, academicians, students, scientists, and researchers pursuing research in the nanotechnology field.
As nanotechnology enters everyday life, engineered nanoparticles (ENP) will find their way into nature, including surface and groundwater. Here, distinguished experts of water chemistry present dedicated methods for the analysis of nanoparticles in the aquatic environment, their distribution and fate. This includes the influence of complex matrices such as wastewater, brown water with natural organic matter (NOM), and high salt concentrations as well as available and future standardized methods. The background of geogenic, natural nanoparticles is considered in a discussion of known environmental effects, including strategies to test for potential effects on human and environmental health.
Adverse Effects of Engineered Nanoparticles: A Disease-Oriented Approach provides a systematic evaluation of representative engineered nanomaterial (ENM) of high volume production and of high economic importance. Each class of nanomaterials discussed includes information on what scientists, industry, regulatory agencies and the general public need to know about nanosafety. This book, written by leading international experts in nanotoxicology and nanmoedicine, gives a comprehensive view of the health impact of ENM, focusing on their potential adverse effects in exposed workers, consumers and patients. The beneficial applications, both diagnostic and therapeutic, of ENM are also highlighted. This book fills an important need in terms of bridging the gap between experimental findings and human exposure to ENM, and the clinical and pathological consequences of such exposure in the human population. Multi-authored book written by leading US and European experts on nanotoxicology and nanomedicine Discusses the health implications and a clinical translation of experimental data in this area Takes a schematic, non-exhaustive approach to summarize the most important research data in this field Includes a glossary, with a brief explanation of the term and with a reference to where the term or phrase has been used will be included within the book