Download Free Engine Thermal Management In Light Duty Diesel Engine Book in PDF and EPUB Free Download. You can read online Engine Thermal Management In Light Duty Diesel Engine and write the review.

This handbook deals with the vast subject of thermal management of engines and vehicles by applying the state of the art research to diesel and natural gas engines. The contributions from global experts focus on management, generation, and retention of heat in after-treatment and exhaust systems for light-off of NOx, PM, and PN catalysts during cold start and city cycles as well as operation at ultralow temperatures. This book will be of great interest to those in academia and industry involved in the design and development of advanced diesel and CNG engines satisfying the current and future emission standards.
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.
Handbook of Thermal Management Systems: e-Mobility and Other Energy Applications is a comprehensive reference on the thermal management of key renewable energy sources and other electronic components. With an emphasis on practical applications, the book addresses thermal management systems of batteries, fuel cells, solar panels, electric motors, as well as a range of other electronic devices that are crucial for the development of sustainable transport systems. Chapters provide a basic understanding of the thermodynamics behind the development of a thermal management system, update on Batteries, Fuel Cells, Solar Panels, and Other Electronics, provide a detailed description of components, and discuss fundamentals. Dedicated chapters then systematically examine the heating, cooling, and phase changes of each system, supported by numerical analyses, simulations and experimental data. These chapters include discussion of the latest technologies and methods and practical guidance on their application in real-world system-level projects, as well as case studies from engineering systems that are currently in operation. Finally, next-generation technologies and methods are discussed and considered. Presents a comprehensive overview of thermal management systems for modern electronic technologies related to energy production, storage and sustainable transportation Addresses the main bottlenecks in the technology development for future green and sustainable transportation systems Focuses on the practical aspects and implementation of thermal management systems through industrial case studies, real-world examples, and solutions to key problems
The objective of the research program was to investigate, develop, and demonstrate thermal energy storage systems for the improvement of the starting characteristics of Army Diesel engines exposed to cold temperatures overnight. Because of the effect of the oil temperatures on starting work, a passive thermal protection system that used Phase Change Materials (PCM) and insulation was designed for the oil pan and filter. Waste heat was stored in the PCM during engine operation, and was released back into the oil system after engine shutdown. Experimental tests were conducted with the PCM applied to the oil pan and filter of an M925 5-ton truck. After engine shut-off the oil temperature at the bottom of the pan was maintained at +50 deg F during a 12 hr exposure to average air temperature of 13 deg F. During cold start tests conducted after overnight cold exposure, the engine with the PCM applied to the oil system started faster and required much less cranking energy from the batteries than the baseline engine under similar conditions. A secondary benefit of the warmer oil is the improved engine lubrication at startup, which can reduce engine wear. A passive thermal protection system was also built and tested for the battery box.