Download Free Engine Dynamics And Crankshaft Design Book in PDF and EPUB Free Download. You can read online Engine Dynamics And Crankshaft Design and write the review.

Of the forces in a four-stroke diesel engine with in-line cylinders. Mean tangential force. Summary of the forces acting in a two-stroke diesel engine. Summary of the forces acting in a V-diesel engine. Diesel engine torque. Balancing of torque oscillation and selection of flywheel. Applied masses and moments of inertia of rotating components. Starting up a diesel engine. Balancing engine vibration -- Ch. 3. Design and Structural Analysis of Diesel Engine Components. Bedplate and base. Main bearing caps. Crankcase. Tension rods. Cylinder jacket and cylinder liner. Cylinder head. Piston. Piston pin. Piston rings. Connecting rod. Connecting rod bolts. Crankshaft. Flywheel bolts. Factor of safety of diesel engine components.
This Book Primarily Written To Meet The Needs Of Practicing Engineers In A Large Variety Of Industries Where Reciprocating Machines Are Used, Although All Of The Material Is Suitable For College Undergraduate Level Design Engineering Courses. It Is Expected That The Reader Is Familiar With Basic To Medium Level Calculus Offered At The College Undergraduate Level.The First Chapter Of The Book Deals With Classical Vibration Theory, Starting With A Single Degree Of Freedom System, To Develop Concepts Of Damping, Response And Unbalance. The Second Chapter Deals With Types And Classification Of Reciprocating Machines, While The Third Chapter Discusses Detail-Design Aspects Of Machine Components. The Fourth Chapter Introduces The Dynamics Of Slider And Cranks Mechanism, And Provides Explanation Of The Purpose And Motion Of Various Components.The Fifth Chapter Looks Into Dynamic Forces Created In The System, And Methods To Balance Gas Pressure And Inertia Loads. The Sixth Chapter Explains The Torsional Vibration Theory And Looks At The Different Variables Associated With It. Chapter Seven Analyzes Flexural Vibrations And Lateral Critical Speed Concepts, Together With Journal Bearings And Their Impact On A Rotating System. Advanced Analytical Techniques To Determine Dynamic Characteristics Of All Major Components Of Reciprocating Machinery Are Presented In Chapter Eight. Methods To Mitigate Torsional Vibrations In A Crankshaft Using Absorbers Are Analyzed In Close Detail. Various Mechanisms Of Flexural Excitation Sources And Their Response On A Rotor-Bearing System Are Explored. Stability Of A Rotor And Different Destabilizing Mechanisms Are Also Included In This Chapter.Techniques In Vibration Measurement And Balancing Of Reciprocating And Rotating Systems Are Presented In Chapter Nine. Chapter Ten Looks At Computational Fluid Dynamics Aspects Of Flow Through Intake And Exhaust Manifolds, As Well As Fluid Flow Induced Component Vibrations. Chapter Eleven Extends This Discussion To Pressure Pulsations In Piping Attached To Reciprocating Pumps And Compressors. Chapter Twelve Considers The Interaction Between The Structural Dynamics Of Components And Noise, Together With Methods To Improve Sound Quality. Optimized Design Of Components Of Reciprocating Machinery For Specified Parameters And Set Target Values Is Investigated At Length In Chapter Thirteen. Practicing Engineers Interested In Applying The Theoretical Model To Their Own Operating System Will Find Case Histories Shown In Chapter FourteenUseful.
This book presents, in a clear and easy-to-understand manner, the basic principles involved in the design of high performance engines. Editor Joseph Harralson first compiled this collection of papers for an internal combustion engine design course he teaches at the California State University of Sacramento. Topics covered include: engine friction and output; design of high performance cylinder heads; multi-cylinder motorcycle racing engines; valve timing and how it effects performance; computer modeling of valve spring and valve train dynamics; correlation between valve size and engine operating speed; how flow bench testing is used to improve engine performance; and lean combustion. In addition, two papers of historical interest are included, detailing the design and development of the Ford D.O.H.C. competition engine and the coventry climax racing engine.