Download Free Energy Use Efficiency Book in PDF and EPUB Free Download. You can read online Energy Use Efficiency and write the review.

Energy Efficiency: Concepts and Calculations is the first book of its kind to provide an applied, systems oriented description of energy intensity and efficiency in modern economies across the entire energy chain. With an emphasis on analysis, specifically energy flow analysis, lifecycle energy accounting, economic analysis, technology evaluation, and policies/strategies for adopting high energy efficiency standards, the book provides a comprehensive understanding of the concepts, tools and methodologies for studying and modeling macro-level energy flows through, and within, key economic sectors (electric power, industrial, commercial, residential and transportation). Providing a technical discussion of the application of common methodologies (e.g. cost-benefit analysis and lifecycle assessment), each chapter contains figures, charts and examples from each sector, including the policies that have been put in place to promote and incentivize the adoption of energy efficient technologies.
Shows readers how we can all help solve the climate crisis by focusing on a few key, achievable actions.
Energy Efficiency of Vehicles educates readers about energy and the environment and the relationship between the energy we use and the environment. The world is at a point in time when people need to make very important decisions about energy in the next few decades. This book enables readers to utilize our scientific knowledge to make good rational decisions. Energy Efficiency of Vehicles provides information on: Calculations related to energy, power, and efficiency, and the impact of using different types of energy on the environment. Environmental consequences of consuming energy. Models related to impact of city driving on the energy efficiency and fuel economy of cars and trucks.
Handbook of Energy Efficiency in Buildings: A Life Cycle Approach offers a comprehensive and in-depth coverage of the subject with a further focus on the Life Cycle. The editors, renowned academics, invited a diverse group of researchers to develop original chapters for the book and managed to well integrate all contributions in a consistent volume. Sections cover the role of the building sector on energy consumption and greenhouse gas emissions, international technical standards, laws and regulations, building energy efficiency and zero energy consumption buildings, the life cycle assessment of buildings, from construction to decommissioning, and other timely topics. The multidisciplinary approach to the subject makes it valuable for researchers and industry based Civil, Construction, and Architectural Engineers. Researchers in related fields as built environment, energy and sustainability at an urban scale will also benefit from the books integrated perspective. - Presents a complete and thorough coverage of energy efficiency in buildings - Provides an integrated approach to all the different elements that impact energy efficiency - Contains coverage of worldwide regulation
Combining empirical and theoretical studies at both the macro and micro levels, this book explores the reasons why improved energy efficiency may not reduce energy consumption.
Energy is one of the most important factors of production. Its efficient use is crucial for ensuring production and environmental quality. Unlike normal goods with supply management, energy is demand managed. Efficient energy use—or energy efficiency—aims to reduce the amount of energy required to provide products and services. Energy use efficiency can be achieved in situations such as housing, offices, industrial production, transport and agriculture as well as in public lighting and services. The use of energy can be reduced by using technology that is energy saving. This Special Issue is a collection of research on energy use efficiency.
America's economy and lifestyles have been shaped by the low prices and availability of energy. In the last decade, however, the prices of oil, natural gas, and coal have increased dramatically, leaving consumers and the industrial and service sectors looking for ways to reduce energy use. To achieve greater energy efficiency, we need technology, more informed consumers and producers, and investments in more energy-efficient industrial processes, businesses, residences, and transportation. As part of the America's Energy Future project, Real Prospects for Energy Efficiency in the United States examines the potential for reducing energy demand through improving efficiency by using existing technologies, technologies developed but not yet utilized widely, and prospective technologies. The book evaluates technologies based on their estimated times to initial commercial deployment, and provides an analysis of costs, barriers, and research needs. This quantitative characterization of technologies will guide policy makers toward planning the future of energy use in America. This book will also have much to offer to industry leaders, investors, environmentalists, and others looking for a practical diagnosis of energy efficiency possibilities.
For multi-user PDF licensing, please contact customer service. Energy touches our lives in countless ways and its costs are felt when we fill up at the gas pump, pay our home heating bills, and keep businesses both large and small running. There are long-term costs as well: to the environment, as natural resources are depleted and pollution contributes to global climate change, and to national security and independence, as many of the world's current energy sources are increasingly concentrated in geopolitically unstable regions. The country's challenge is to develop an energy portfolio that addresses these concerns while still providing sufficient, affordable energy reserves for the nation. The United States has enormous resources to put behind solutions to this energy challenge; the dilemma is to identify which solutions are the right ones. Before deciding which energy technologies to develop, and on what timeline, we need to understand them better. America's Energy Future analyzes the potential of a wide range of technologies for generation, distribution, and conservation of energy. This book considers technologies to increase energy efficiency, coal-fired power generation, nuclear power, renewable energy, oil and natural gas, and alternative transportation fuels. It offers a detailed assessment of the associated impacts and projected costs of implementing each technology and categorizes them into three time frames for implementation.
The entire world, especially the United States, is in the midst of an energy revolution. Since the oil embargo of 1973, individuals, corporations, and other organizations have found ways to economically reduce energy use. In this book, Jim Sweeney examines the energy policies and practices of the past forty years and their impact on three crucial systems: the economy, the environment, and national security. He shows how energy-efficiency contributions to the country's overall energy situation have been more powerful than all the increases in the domestic production of oil, gas, coal, geothermal energy, nuclear power, solar power, wind power, and biofuels. The author details the impact of new and improved energy-efficient technologies, the environmental and national security benefits of energy efficiency, ways to amplify energy efficiency, and more. Energy Efficiency: Building a Clean, Secure Economy reveals how the careful nurturing of private- and public-sector energy efficiency--along with public awareness, appropriate pricing, appropriate policies--and increased research and development, the trends of decreasing energy intensity and increasing energy efficiency can be beneficially accelerated.
Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.