Download Free Energy Technology 2014 Book in PDF and EPUB Free Download. You can read online Energy Technology 2014 and write the review.

This book addresses the issues, intricacies, and challengesrelating to energy and environmental sciences. Papers cover varioustechnological aspects of sustainable energy eco-systems andprocesses that improve energy efficiency, and reduce andsequestrate carbon dioxide (CO2) and other greenhouseemissions. The collection also emphasizes the need for sustainabletechnologies in extractive metallurgy, materials processing andmanufacturing industries with reduced energy consumption andCO2 emission. Industrial energy efficient technologiesinclude innovative ore beneficiation, smelting technologies,recycling and waste heat recovery. The book also carriescontributions from all areas of non-nuclear and non-traditionalenergy sources, including renewable energy sources such as solar,wind, and biomass. Papers from the following symposia are presented in thebook: Energy Technologies and Carbon DioxideManagement High-temperature Material Systems for Energy Conversion andStorage Solar Cell Silicon
Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. - Emphasis on reactor engineering in sustainable energy technology - Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics - Expert accounts of reactor types, processing, and optimization - Figures and tables designed to comprehensively present concepts and proceduresHundreds of citations drawing on many most recent and previously published works on the subject
An edited volume on factors determining success or failure of energy technology innovation, for researchers and policy makers.
This is an easy-to-read textbook providing the reader with the basis to comprehend the major energy technologies from a physical and economical perspective. The journey through the book begins with some background theory on the physics and economics of energy. Major energy technologies (fossil, nuclear and renewable) are explored in-depth, explaining how they work and the costs involved. Finally, the journey ends by exploring the technical and economic feasibility of supplying the world by 2050 with sustainable energy only. Numerous examples are provided to allow the reader to relate important concepts to real-life. The reader’s understanding of the material can then be tested using the exercises at the end of each chapter. This textbook is the first to thoroughly present the physics and the economics of energy. It is intended for graduate students and practitioners interested in the field of energy. It also enables the general reader to distinguish between political statement and fact.
It is now widely recognized that there is a need for long-term secure and suitable sustainable forms of energy. Renewable energy from the marine environment, in particular renewable energy from tidal currents, wave and wind, can help achieve a sustainable energy future. Our understanding of environmental impacts and suitable mitigation methods associated with extracting renewable energy from the marine environment is improving all the time and it is essential that we be able to distinguish between natural and anthropocentric drivers and impacts. An overview of current understanding of the environmental implications of marine renewable energy technology is provided.
Solar Energy is an authoritative reference on the design of solar energy systems in building projects, with applications, operating principles, and simple tools for the construction, engineering, and design professional. The book simplifies the solar design and engineering process, providing sample documentation and special tools that provide all the information needed for the complete design of a solar energy system for buildings to enable mainstream MEP and design firms, and not just solar energy specialists, to meet the growing demand for solar energy systems in building projects.
This book covers various technological aspects of sustainable energy ecosystems and processes that improve energy efficiency, and reduce and sequestrate carbon dioxide (CO2) and other greenhouse emissions. Papers emphasize the need for sustainable technologies in extractive metallurgy, materials processing and manufacturing industries with reduced energy consumption and CO2 emission. Industrial energy efficient technologies include innovative ore beneficiation, smelting technologies, recycling, and waste heat recovery. The book also contains contributions from all areas of non-nuclear and non-traditional energy sources, including renewable energy sources such as solar, wind, and biomass. Papers from the following symposia are presented in the book: Energy Technologies and Carbon Dioxide Management Recycling and Sustainability Update Magnetic Materials for Energy Applications V Sustainable Energy and Layered Double Hydroxides
The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: – A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Chernobyl. These safety concepts are also compared with the experiences of the Fukushima accidents. In addition, the safety design concepts of the future modern European Pressurized Water Reactor (EPR) and of the future modern Boiling Water Reactor SWR-1000 (KERENA) are presented. These are based on new safety research results of the past decades. – In a second, part the possible crash of military or heavy commercial air planes on reactor containment is analyzed. It is shown that reactor containments can be designed to resist to such an airplane crash. – In a third part, an online decision system is presented. It allows to analyze the distribution of radioactivity in the atmosphere and to the environment after a severe reactor accident. It provides data for decisions to be taken by authorities for the minimization of radiobiological effects to the population. This book appeals to readers who have an interest in save living conditions and some understanding for physics or engineering.
Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use. - Describes how thermal energy storage helps bridge the gap between energy demand and supply, particularly for intermittent power sources like solar, wind, and tidal systems - Provides tables, illustrations, and comparative case studies that show applications of TES systems across industries - Includes a chapter on the rapidly developing field of viable nanotechnology-based thermal energy storage systems
A text for distance learning for energy engineers at the graduate or advanced undergraduate level. Explains the basic principles of wind energy conversion; examines how they influence the design of modern wind turbines; and discusses project development and engineering, focusing on economic and environmental considerations. Annotation copyrighted by Book News, Inc., Portland, OR