Download Free Energy Management And Efficiency For The Process Industries Book in PDF and EPUB Free Download. You can read online Energy Management And Efficiency For The Process Industries and write the review.

Provides a unique overview of energy management for the process industries Provides an overall approach to energy management and places the technical issues that drive energy efficiency in context Combines the perspectives of freewheeling consultants and corporate insiders In two sections, the book provides the organizational framework (Section 1) within which the technical aspects of energy management, described in Section 2, can be most effectively executed Includes success stories from three very different companies that have achieved excellence in their energy management efforts Covers energy management, including the role of the energy manager, designing and implementing energy management programs, energy benchmarking, reporting, and energy management systems Technical topics cover efficiency improvement opportunities in a wide range of utility systems and process equipment types, as well as techniques to improve process design and operation
Exploring methods and techniques to optimize processing energy efficiency in process plants, Energy and Process Optimization for the Process Industries provides a holistic approach that considers optimizing process conditions, changing process flowschemes, modifying equipment internals, and upgrading process technology that has already been used in a process plant with success. Field tested by numerous operating plants, the book describes technical solutions to reduce energy consumption leading to significant returns on capital and includes an 8-point Guidelines for Success. The book provides managers, chemical and mechanical engineers, and plant operators with methods and tools for continuous energy and process improvements.
Energy efficiency, environmental protection, and processing waste management continue to attract increased attention in the food processing industry. As with other industrial sectors, reducing costs while also reducing environmental impact and improving overall sustainability is becoming an important part of the business process. Providing practica
Provides a unique overview of energy management for the process industries Provides an overall approach to energy management and places the technical issues that drive energy efficiency in context Combines the perspectives of freewheeling consultants and corporate insiders In two sections, the book provides the organizational framework (Section 1) within which the technical aspects of energy management, described in Section 2, can be most effectively executed Includes success stories from three very different companies that have achieved excellence in their energy management efforts Covers energy management, including the role of the energy manager, designing and implementing energy management programs, energy benchmarking, reporting, and energy management systems Technical topics cover efficiency improvement opportunities in a wide range of utility systems and process equipment types, as well as techniques to improve process design and operation
Introduction to Industrial Energy Efficiency: Energy Auditing, Energy Management, and Policy Issues offers a systemic overview of all key-aspects involved in improving industrial energy efficiency in various industry sectors. It is organized in three parts, each dealing with a particular perspective needed to form a complete view of related issues. Sections focus on energy auditing and improved energy efficiency of companies from a predominantly technical perspective, shed light on energy management and factors that hinder or drive the adoption of energy efficiency practices in the manufacturing industry, and explore energy efficiency policy instruments and how they are designed, implemented and evaluated. Practicing engineers in the field of energy efficiency, engineering and energy researchers coming into the field, and graduate students will find this book to be an invaluable reference on the fundamental knowledge they need to get started in this area. Provides, in one volume, a comprehensive overview of energy systems efficiency and management that is applied to various industrial processes Explores operational measures for improvement, including case studies from varying countries and sectors Discusses the barriers to, and driving forces for, improving energy efficiency in industrial settings, including technical, behavioral, organizational and policy aspects
This book is presented to demonstrate how energy efficiency can be achieved in existing systems or in the design of a new system, as well as a guide for energy savings opportunities. Accordingly, the content of the book has been enriched with many examples applied in the industry. Thus, it is aimed to provide energy savings by successfully managing the energy in the readers’ own businesses. The authors primarily present the necessary measurement techniques and measurement tools to be used for energy saving, as well as how to evaluate the methods that can be used for improvements in systems. The book also provides information on how to calculate the investments to be made for these necessary improvements and the payback periods. The book covers topics such as: • Reducing unit production costs by ensuring the reduction of energy costs, • Efficient and quality energy use, • Meeting market needs while maintaining competitive conditions, • Ensuring the protection of the environment by reducing CO2 and CO emissions with energy saving and energy efficiency, • Ensuring the correct usage of systems by carrying out energy audits. In summary, this book explains how to effectively design energy systems and manage energy to increase energy savings. In addition, the study has been strengthened by giving some case studies and their results in the fields of intensive energy consumption in industry. This book is an ideal resource for practitioners, engineers, researchers, academics, employees and investors in the fields of energy, energy management, energy efficiency and energy saving.
Energy Conservation in the Process Industries provides insight into ways of identifying more important energy efficiency improvements. This book demonstrates how the principles can be employed to practical advantage. Organized into 12 chapters, this book begins with an overview of the energy situation and a background in thermodynamics. This text then describes a staged method to improved energy use to understand where the energy goes and how to calculate the value of losses. Other chapters consider improving facilities based on an understanding of the overall site energy system. This book discusses as well the fundamental process and equipment improvements. The final chapter deals with systematic and sophisticated design methods as well as provides some guidelines and checklists for energy conservation items. This book is a valuable resource for mechanical, lead process, and plant engineers involved in energy conservation. Process designers, plant managers, process researchers, and accountants will also find this book extremely useful.
It is universally recognized that the end of the current and the beginning of the next century will be characterized by a radical change in the existing trends in the economic development of all countries and a transition to new principles of economic management on the basis of a resource and energy conservation policy. Thus there is an urgent necessity to study methods, technical aids and economic consequences of this change, and particularly, to determine the possible amounts of energy resources which could be conserved (energy "reserves") in different spheres of the national economy. An increased interest towards energy conservation in industry, one of the largest energy consumers, is quite natural and is manifested by the large num ber of publications on this topic. But the majority of publications are devoted to the solution of narrowly defined problems, determination of energy reserves in specific processes and plants, efficiency estimation of individual energy conserva tion measures, etc. However, it is necessary to develop a general methodological approach to the solution of such problems and create a scientific and methodical base for realizing an energy conservation policy. Such an effort is made in this book, which is concerned with methods for studying energy use efficiency in technological processes and estimation of the theoretical and actual energy reserves in a given process, technology, or industrial sector on the basis of their complete energy balances.
This monograph provides foundations, methods, guidelines and examples for monitoring and improving resource efficiency during the operation of processing plants and for improving their design. The measures taken to improve their energy and resource efficiency are strongly influenced by regulations and standards which are covered in Part I of this book. Without changing the actual processing equipment, the way how the processes are operated can have a strong influence on the resource efficiency of the plants and this potential can be exploited with much smaller investments than needed for the introduction of new process technologies. This aspect is the focus of Part II. In Part III we discuss physical changes of the process technology such as heat integration, synthesis and realization of optimal processes, and industrial symbiosis. The last part deals with the people that are needed to make these changes possible and discusses the path towards a resource efficiency culture. Written with industrial solutions in mind, this text will benefit practitioners as well as the academic community.
This monograph presents a reliable methodology for characterising the energy and eco-efficiency of unit manufacturing processes. The Specific Energy Consumption, SEC, will be identified as the key indicator for the energy efficiency of unit processes. An empirical approach will be validated on different machine tools and manufacturing processes to depict the relationship between process parameters and energy consumptions. Statistical results and additional validation runs will corroborate the high level of accuracy in predicting the energy consumption. In relation to the eco-efficiency, the value and the associated environmental impacts of manufacturing processes will also be discussed. The interrelationship between process parameters, process value and the associated environmental impact will be integrated in the evaluation of eco-efficiency. The book concludes with a further investigation of the results in order to develop strategies for further efficiency improvement. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.