Download Free Energy Harvesting For Low Power Autonomous Devices And Systems Book in PDF and EPUB Free Download. You can read online Energy Harvesting For Low Power Autonomous Devices And Systems and write the review.

This unique resource provides a detailed understanding of the options for harvesting energy from localized, renewable sources to supply power to autonomous wireless systems. You are introduced to a variety of types of autonomous system and wireless networks and discover the capabilities of existing battery-based solutions, RF solutions, and fuel cells. The book focuses on the most promising harvesting techniques, including solar, kinetic, and thermal energy. You also learn the implications of the energy harvesting techniques on the design of the power management electronics in a system. This in-depth reference discusses each energy harvesting approach in detail, comparing and contrasting its potential in the field.
"This book is an introductory text describing methods of harvesting electrical energy from mechanical potential and kinetic energy. The book focuses on the methods of transferring mechanical energy to energy conversion transducers of various types, including piezoelectric, electromagnetic, electrostatic, and magnetostrictive transducers. Methods that have been developed for collecting, conditioning, and delivering the generated electrical energy to a load, as well as their potential use as self-powered sensors are described. The book should be of interest to those who want to know the potentials as well as shortcomings of energy harvesting technology. The book is particularly useful for energy harvesting system designers as it provides a systematic approach to the selection of the proper transduction mechanisms and methods of interfacing with a host system and electrical energy collection and conditioning options. An extensive bibliography is provided to direct the reader to appropriate references for detailed material not included in the book"--
Kinetic energy harvesting converts movement or vibrations into electrical energy, enables battery free operation of wireless sensors and autonomous devices and facilitates their placement in locations where replacing a battery is not feasible or attractive. This book provides an introduction to operating principles and design methods of modern kinetic energy harvesting systems and explains the implications of harvested power on autonomous electronic systems design. It describes power conditioning circuits that maximize available energy and electronic systems design strategies that minimize power consumption and enable operation. The principles discussed in the book will be supported by real case studies such as battery-less monitoring sensors at water waste processing plants, embedded battery-less sensors in automotive electronics and sensor-networks built with ultra-low power wireless nodes suitable for battery-less applications.
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented. Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly the most feasible option for autonomous sensors embedded into the soil or within structures. Throughout different chapters, devices such as primary and secondary batteries, supercapacitors, and energy transducers are extensively reviewed. Then, circuits and methods found in the literature used to efficiently extract and gather the energy are presented. Finally, new proposals based on the authors’ own research are analyzed and tested. Every chapter is written to be rather independent, with each incorporating the relevant literature references. Powering Autonomous Sensors is intended for a wide audience working on or interested in the powering of autonomous sensors. Researchers and engineers can find a broad introduction to basic topics in this interesting and emerging area as well as further insights on the topics of solar and RF harvesting and of circuits and methods to maximize the power extracted from energy transducers.
"This book is an introductory text describing methods of harvesting electrical energy from mechanical potential and kinetic energy. The book focuses on the methods of transferring mechanical energy to energy conversion transducers of various types, including piezoelectric, electromagnetic, electrostatic, and magnetostrictive transducers. Methods that have been developed for collecting, conditioning, and delivering the generated electrical energy to a load, as well as their potential use as self-powered sensors are described. The book should be of interest to those who want to know the potentials as well as shortcomings of energy harvesting technology. The book is particularly useful for energy harvesting system designers as it provides a systematic approach to the selection of the proper transduction mechanisms and methods of interfacing with a host system and electrical energy collection and conditioning options. An extensive bibliography is provided to direct the reader to appropriate references for detailed material not included in the book"--
Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation provides a wide range of coverage of various energy harvesting techniques to enable the development of a truly self-autonomous and sustainable energy harvesting wireless sensor network (EH-WSN). It supplies a practical overview of the entire EH-WSN system from energy source all the way to energy usage by wireless sensor nodes/network. After an in-depth review of existing energy harvesting research thus far, the book focuses on: Outlines two wind energy harvesting (WEH) approaches, one using a wind turbine generator and one a piezoelectric wind energy harvester Covers thermal energy harvesting (TEH) from ambient heat sources with low temperature differences Presents two types of piezoelectric-based vibration energy harvesting systems to harvest impact or impulse forces from a human pressing a button or switch action Examines hybrid energy harvesting approaches that augment the reliability of the wireless sensor node’s operation Discusses a hybrid wind and solar energy harvesting scheme to simultaneously use both energy sources and therefore extend the lifetime of the wireless sensor node Explores a hybrid of indoor ambient light and TEH scheme that uses only one power management circuit to condition the combined output power harvested from both energy sources Although the author focuses on small-scale energy harvesting, the systems discussed can be upsized to large-scale renewable energy harvesting systems. The book goes beyond theory to explore practical applications that not only solve real-life energy issues but pave the way for future work in this area.
With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.
This book focuses on the numerous energy harvesting techniques and their system implementation towards the fulfilment of energy requirements in compact electronic devices. These cover a wide range of applications in portable devices, bio-medical services, agriculture needs, mechanical systems, sensor networks, automobiles, food sector, home appliances, industry needs, etc. The authors detail energy harvesting methods using the latest technologies in acoustics, bio-chemical, thermal, artificial light, fluid flow, vibrations, EM energy, RF energy, piezoelectric, electrostatic, photovoltaic, thermoelectric, hybrid harvesting, ultrasonic, infrared, light, wind, and solar. The book is intended for researchers, academics, professionals, and students in energy harvesting.
This book presents the proceedings of SympoSIMM 2021, the 4th edition of the Symposium on Intelligent Manufacturing and Mechatronics. Focusing on “Strengthening Innovations Towards Industry 4.0”, the book is divided into five parts covering various areas of manufacturing engineering and mechatronics stream, namely, intelligent manufacturing and artificial intelligence, Instrumentation and control, design modelling and simulation, process and machining technology, and smart material. The book will be a valuable resource for readers wishing to embrace the new era of Industry 4.0.