Download Free Energy Efficient Anodic Reactions For Sustainable Hydrogen Production Via Water Electrolysis Book in PDF and EPUB Free Download. You can read online Energy Efficient Anodic Reactions For Sustainable Hydrogen Production Via Water Electrolysis and write the review.

Overall water splitting is considered as an effective technique for hydrogen (H2) production; however, it usually requires large operating voltage mainly due to the high equilibrium potential of the anodic oxygen evolution reaction (OER). Replacing OER with energy-saving anode reactions not only reduces the operating voltage for H2 production but also generates high-value-added chemicals or purifies wastewater. This review article provides an overview of the fundamental reaction principles of overall water splitting and typical energy-saving alternative anode reactions, including methanol oxidation, hydrazine oxidation, and urea oxidation reactions. Then, the preparation methods, regulation strategies, and composition/structure-performance relations of advanced catalysts for these energy-efficient H2 generation technologies are discussed. Finally, we propose the underlying challenges and perspectives for this promising field.
PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. - Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers - Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies - Includes unconventional systems, such as ozone generators - Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike
Aiming at the generation of hydrogen from water, electrochemical water splitting represents a promising clean technology for generating a renewable energy resource. The book reviews the fundamental aspects and describes recent research advances. Properties and characterization methods for various types of electrocatalysts are discussed, including noble metals, earth-abundant metals, metal-organic frameworks, carbon nanomaterials and polymers. Keywords: Electrochemical Water Splitting, Renewable Energy Resource, Electrocatalysts, Oxygen Evolution Reaction (OER), Noble Metal Catalysts, Earth-Abundant Metal Catalysts, MOF Catalysts, Carbon-based Nanocatalysts, Polymer Catalysts, Transition Metal-based Electrocatalysts, Fe-based Electrocatalysts, Co-based Electrocatalysts, Ni-based Electrocatalysts, Metal Free Catalysts, Transition-Metal Chalcogenides, Prussian Blue Analogues.
Hydrogen Electrochemical Production presents different avenues of hydrogen production for energy applications, including current developments and future perspectives, using an interdisciplinary approach. Part of the Hydrogen Energy and Fuel Cell Primers series, the volume synthesizes information from many sources, making it a useful reference for industry professionals, researchers and graduate students. The book examines various methods, explaining their advantages and limitations. The water electrolysis reaction and systems are explored from different points of view, including an assessment of state-of-the-art technologies. Alternatives to water for feeding the electrolysis cell anode and for electrochemical hydrogen production (such as alcohol or other compounds from biomass) are discussed. - Explores current technology developments and future perspectives of hydrogen production for energy applications - Examines the state-of-the art technology in electrolysis reaction and systems and discusses the advantages and limitations of various methods - Covers alternatives to water for feeding electrolysis cell anode, including alcohol and other compounds from biomass
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
This book provides a comprehensive picture of the various routes to use electricity to produce hydrogen using electrochemical science and technology.
In this ready reference, top academic researchers, industry players and government officers join forces to develop commercial concepts for the transition from current nuclear or fossil fuel-based energy to renewable energy systems within a limited time span. They take into account the latest science and technology, including an analysis of the feasibility and impact on the environment, economy and society. In so doing, they discuss such complex topics as electrical and gas grids, fossil power plants and energy storage technologies. The contributions also include robust, conceivable and breakthrough technologies that will be viable and implementable by 2020.
An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevan
Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds provides a comprehensive overview of the thermodynamics and experimental results that allow the decomposition process of organic compounds leading to hydrogen to be carried out at working cell voltages much lower than those encountered in water electrolysis. The authors review different methods of synthesis and characterization of the catalysts needed to activate the electro-oxidation reaction and describe different electrolysis experiments that produce hydrogen in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Other sections investigate the effect of the nature of the reactive molecules, the nature and structure of the catalysts, and more. By exploring the link between organic oxidation/conversion to hydrogen production, this book fills a gap in the existing literature and provides researchers in the field with an authoritative and comprehensive reference they can use when developing new sustainable processes and systems for hydrogen production. - Explores, in detail, the decomposition process of organic compounds leading to hydrogen - Presents foundational information, practical insights and pathways for future work in the development of proton exchange membrane electrolysis cell systems - Includes results, experimental data and interpretations using different organic compounds, such as methanol, formic acid, ethanol, glycerol and biomass
New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes.Batteries and fuel cells are considered to be environmentally friendly devices for storage and production of electricity, and they are gaining considerable attention. The preparation of the feed for fuel cells (fuel) as well as the catalysts and the various conversion processes taking place in these devices are covered in this volume, together with the catalytic processes for hydrogen generation and storage. An economic analysis of the various processes is also part of this volume and enables an informed choice of the most suitable process. - Offers in-depth coverage of all catalytic topics of current interest and outlines future challenges and research areas - A clear and visual description of all parameters and conditions, enabling the reader to draw conclusions for a particular case - Outlines the catalytic processes applicable to energy generation and design of green processes