Download Free Energy Efficiency Policy Opportunities For Electric Motor Driven Systems Book in PDF and EPUB Free Download. You can read online Energy Efficiency Policy Opportunities For Electric Motor Driven Systems and write the review.

This paper is the first global analysis of the potential energy savings which could be found in electric motor- driven system (EMDS). EMDS currently accounts for more than 40% of global electricity consumption. Huge untapped energy efficiency potential was found in EMDS; around 25 % of EMDS electricity use could be saved cost-effectively, which would reduce total global electricity demand by about 10%. To date, energy efficiency opportunities with EMDS have been relatively neglected in comparison with other sustainable energy opportunities. It is crucial to scale up operations and resources committed to realizing the vast potential energy savings and this paper proposes a comprehensive package of policy recommendations to help governments achieve these significant energy savings in EMDS.
Electric motor-driven system (EMDS) accounts for more than 40% of global electricity consumption. This paper sets out an ambitious but achievable target with the global work plan to improve the energy efficiency of EMDS by 10% to 15% based on findings from the working paper 'Energy Efficiency Policy Opportunities for Electric Motor-Driven System (Waide et al., 2011)'. If governments commit to the proposed work plan immediately, and maintain resourcing levels, the target could be achieved by 2030 and would be equivalent to reducing total global electricity use by around 5%. The proposed work plan of this paper is to align regulatory settings within a globally applicable scheme. The IEA believes its target can only be achieved through global co-operation leading to aligned national policy settings.
This book reports the state of the art of energy-efficient electrical motor driven system technologies, which can be used now and in the near future to achieve significant and cost-effective energy savings. It includes the recent developments in advanced electrical motor end-use devices (pumps, fans and compressors) by some of the largest manufacturers. Policies and programs to promote the large scale penetration of energy-efficient technologies and the market transformation are featured in the book, describing the experiences carried out in different parts of the world. This extensive coverage includes contributions from relevant institutions in the Europe, North America, Latin America, Africa, Asia, Australia and New Zealand.
The reduction of energy consumption through improvements in energy efficiency has become an important goal for all countries, in order to improve the efficiency of the economy, to increase energy supply security, and to reduce the emissions of CO and other pollutants caused by power· generation. 2 Electric motors use over half of all electricity consumed in developed countries. Typically 60-80% of the electricity which is used in the industrial sector and about 35% of the electricity used in the commercial sector in the European Union is consumed by motors. In industry, a motor consumes an annual quantity of electricity which corresponds to approximately 5 times its purchase price, throughout its whole life of aroun~ 12 to 20 years. Motors are by far the most important type of electric load. They are used in all sectors and in a wide range of applications, namely the following: fans, compressors, pumps, mills, winders, elevators, transports, home appliances, and office equipment, etc. It is their wide use that makes motor drive systems one of the main targets to achieve significant energy savings. As motors are the largest USers of electrical energy, even small efficiency improvements will produce very large energy savings.
The 1997 Kyoto Conference defined CO2 emISSIOn targets for the developed regions of the world. The EU target of decreasing the emissions 8% below the 1990 level, by 2010, will require a very substantial effort covering basically all activities if such a target is to be reached. Energy-efficient motor systems can provide one of the most important opportunities to achieve electricity savings in a cost effective way, avoiding at the same time the emission of tens of millions of tons of carbon. The reduction of energy consumption through improvements in energy efficiency is one of the major instruments for developed and developing countries to meet the Kyoto commitments. Energy efficiency is also a key element of the European Union (EU) energy policy, since it improves the efficiency of the economy, increases energy supply security, and decreases harmful emissions due to electricity generation. Electric motor systems use over half of all electricity consumed in developed countries. Typically about 70% of the electricity which is used in the industrial sector and about 35% of the electricity used in the commercial sector in the EU is consumed by motor systems. In industry, a motor on average consumes an annual quantity of electricity which corresponds to approximately 5 times its purchase price, throughout its whole life of around 12 to 20 years.
Motors use more than half of all electricity. This book outlines an approach for increasing motor and motor system efficiency through high-efficiency motors, optimized controls, improved component sizing and repair, better transmission hardware, and more comprehensive monitoring and maintenance. In addition to explaining technical opportunities in language understandable to non-engineers, the book reviews what is known about the existing motor stock and its use, chronicles experience to date with drive power programs and policies, and offers recommendations for future efforts. Full application of the measures described can cut U.S. electricity demand by up to 20 percent, save motor users and utilities billions of dollars, reduce pollutant emissions, and enhance productivity. The book was written by an interdisciplinary team of engineers, energy analysts, and program planners who collectively have over 50 years of experience in the energy efficiency field.
This detailed reference provides guidelines for the selection and utilization of electric motors for improved reliability, performance, energy-efficiency, and life-cycle cost. Completely revised and expanded, the book reflects the recent state of the field, as well as recent developments in control electronics, the economics of energy-efficient motors and systems, and advanced power electronic drivers. It includes five new chapters covering key topics such as the fundamentals of power electronics applicable to electric motor drives, adjustable speed drives and their applications, advanced switched reluctance motor drives, and permanent magnet and brushless DC motor drives.
This book contains selected, peer-reviewed papers presented at the 11th International Conference on Energy Efficiency in Motor Systems (EEMODS'19), held in Tokyo, Japan from 17-19 September 2019. As with previous conferences in this series, EEMODS’19 provided a scientific forum to discuss and debate the latest developments and impacts of electrical motor systems on energy and the environment, energy efficiency policies and programmes adopted and planned, standards (including ISO 50.001), and the technical and commercial advances made in the dissemination and penetration of energy-efficient motor systems. Topics covered include: technologies, research and innovation in the areas of electric motors from life cycle costing to 3D printing to artificial intelligence/machine learning-based monitoring systems; emerging motor technologies; power electronics and drives; pump systems, including life cycle costing, energy efficiency improvements, maintenance, and operation for industrial, water supply and treatment, building, and irrigation; compressed air systems; fans /exhaust systems; refrigeration systems maintenance and operation; mechanical power transmission; motors in household appliances and HVAC (residential and commercial); motors and drives for transport applications including policies, programmes, regulation, and international standards; industrial management policies and standards; motor system audit and verification; policies, programmes and financing: analysis of motor system energy use and greenhouse gas emissions for motor systems, e-vehicles and related charging infrastructure; harmonization of global motor efficiency test standards; evaluation of utility programmes for improving energy efficiency in motor systems; and policy implementation, market surveillance and enforcement mechanisms, including case studies. The conference is international by nature and aims to attract high quality and innovative contributions from all corners of the globe, while the papers facilitate the development of new technologies, policies and strategies to increase energy efficiency.