Download Free Energy Efficiency Of Medical Devices And Healthcare Applications Book in PDF and EPUB Free Download. You can read online Energy Efficiency Of Medical Devices And Healthcare Applications and write the review.

Energy Efficiency of Medical Devices and Healthcare Facilities provides comprehensive coverage of cutting-edge, interdisciplinary research, and commercial solutions in this field. The authors discuss energy-related challenges, such as energy-efficient design, including renewable energy, of different medical devices from a hardware and mechanical perspectives, as well as energy management solutions and techniques in healthcare networks and facilities. They also discuss energy-related trade-offs to maximize the medical devices availability, especially battery-operated ones, while providing immediate response and low latency communication in emergency situations, sustainability and robustness for chronic disease treatment, in addition to high protection against cyber-attacks that may threaten patients' lives. Finally, the book examines technologies and future trends of next generation healthcare from an energy efficiency and management point of view, such as personalized or smart health and the Internet of Medical Things — IoMT, where patients can participate in their own treatment through innovative medical devices and software applications and tools. The books applied approach makes it a useful resource for engineering researchers and practitioners of all levels involved in medical devices development, healthcare systems, and energy management of healthcare facilities. Graduate students in mechanical and electric engineering, and computer science students and professionals also benefit. - Provides in-depth knowledge and understanding of the benefits of energy efficiency in the design of medical devices and healthcare networks and facilities - Presents best practices and state-of-art techniques and commercial solutions in energy management of healthcare networks and systems - Explores key energy tradeoffs to provide scalable, robust, and effective healthcare systems and networks
The internet of things (IoT) has had a major impact on academic and industrial fields. Applying these technologies to healthcare systems reduces medical costs while enriching the patient-centric approach to medicine, allowing for better overall healthcare proficiency. However, usage of IoT in healthcare is still suffering from significant challenges with respect to the cost and accuracy of medical sensors, non-standard IoT system architectures, assorted wearable devices, the huge volume of generated data, and interoperability issues. Incorporating the Internet of Things in Healthcare Applications and Wearable Devices is an essential publication that examines existing challenges and provides solutions for building smart healthcare systems with the latest IoT-enabled technology and addresses how IoT improves the proficiency of healthcare with respect to wireless sensor networks. While highlighting topics including mobility management, sensor integration, and data analytics, this book is ideally designed for computer scientists, bioinformatics analysts, doctors, nurses, hospital executives, medical students, IT specialists, software developers, computer engineers, industry professionals, academicians, researchers, and students seeking current research on how these emerging wireless technologies improve efficiency within the healthcare domain.
Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.
The term 'medical devices' covers a wide range of equipment essential for patient care at every level of the health service, whether at the bedside, at a health clinic or in a large specialised hospital. Yet many countries lack access to high-quality devices, particularly in developing countries where health technology assessments are rare and there is a lack of regulatory controls to prevent the use of substandard devices. This publication provides a guidance framework for countries wishing to create or modify their own regulatory systems for medical devices, based on best practice experience in other countries. Issues highlighted include: the need for harmonised regulations; and the adoption, where appropriate, of device approvals of advanced regulatory systems to avoid an unnecessary drain on scarce resources. These approaches allow emphasis to be placed on locally-assessed needs, including vendor and device registration, training and surveillance and information exchange systems.
This book focuses on the Internet of Everything and related fields. The Internet of Everything adds connectivity and intelligence to just about every device, giving it special functions. The book provides a common platform for integrating information from heterogeneous sources. However, this can be quite reductive, as the Internet of Everything provides links not only among things, but also data, people, and business processes. The evolution of current sensor and device networks, with strong interactions between people and social environments, will have a dramatic impact on everything from city planning, first responders, the military and health. Such a shared ecosystem will allow for the interaction between data, sensor inputs and heterogeneous systems. Semantics is a fundamental component of this since semantic technologies are able to provide the necessary bridge between different data representations, and to solve terminology incongruence. Integrating data from distributed devices, sensor networks, social networks and biomedical instruments requires, first of all, the systematization of the current state of the art in such fields. Then, it is necessary to identify a common action thread to actually merge and homogenize standards and techniques applied in such a heterogeneous field. The exact requirements of an Internet of Everything environment need to be precisely identified and formally expressed, and finally, the role of modern computing paradigms, such as Cloud and Fog Computing, needs to be assessed with respect to the requirements expressed by an Internet of Everything ecosystem.
Artificial intelligence (AI) technology has been very successful across fields such as healthcare, security, precision agriculture, smart city, and autonomous driving and promises numerous benefits for social development, economic growth, wellbeing management, and human healthcare. Various intelligent healthcare applications have been created in order to assist patient healthcare and must be studied further. AI Applications for Disease Diagnosis and Treatment provides the current advances and applications of artificial intelligence applications in healthcare such as disease diagnosis, diet proposal, drug prescription and tracking, and physical and psychological assistance. Covering topics such as assistive healthcare, robotics, and machine learning, it is ideal for healthcare professionals, researchers, data analysts, academicians, practitioners, scholars, instructors, and students.
Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. - Updates on new information on the architecture of GPU, NPU and DNN - Discusses In-memory computing, Machine intelligence and Quantum computing - Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance
In the United States, health care devices, technologies, and practices are rapidly moving into the home. The factors driving this migration include the costs of health care, the growing numbers of older adults, the increasing prevalence of chronic conditions and diseases and improved survival rates for people with those conditions and diseases, and a wide range of technological innovations. The health care that results varies considerably in its safety, effectiveness, and efficiency, as well as in its quality and cost. Health Care Comes Home reviews the state of current knowledge and practice about many aspects of health care in residential settings and explores the short- and long-term effects of emerging trends and technologies. By evaluating existing systems, the book identifies design problems and imbalances between technological system demands and the capabilities of users. Health Care Comes Home recommends critical steps to improve health care in the home. The book's recommendations cover the regulation of health care technologies, proper training and preparation for people who provide in-home care, and how existing housing can be modified and new accessible housing can be better designed for residential health care. The book also identifies knowledge gaps in the field and how these can be addressed through research and development initiatives. Health Care Comes Home lays the foundation for the integration of human health factors with the design and implementation of home health care devices, technologies, and practices. The book describes ways in which the Agency for Healthcare Research and Quality (AHRQ), the U.S. Food and Drug Administration (FDA), and federal housing agencies can collaborate to improve the quality of health care at home. It is also a valuable resource for residential health care providers and caregivers.
This unique reference focuses on methods of application, validation and testing based on real deployments of sensor networks in the clinical and home environments. Key topics include healthcare and wireless sensors, sensor network applications, designs of experiments using sensors, data collection and decision making, clinical deployment of wireless sensor networks, contextual awareness medication prompting field trials in homes, social health monitoring, and the future of wireless sensor networks in healthcare.
This book describes the latest advances, innovations, and applications in the field of building design, environmental engineering and sustainability as presented by leading international researchers, engineers, architects and urban planners at the 3rd International Sustainable Buildings Symposium (ISBS), held in Dubai, UAE from 15 to 17 March 2017. It covers highly diverse topics, including smart cities, sustainable building and construction design, sustainable urban planning, infrastructure development, structural resilience under natural hazards, water and waste management, energy efficiency, climate change impacts, life cycle assessment, environmental policies, and strengthening and rehabilitation of structures. The contributions amply demonstrate that sustainable building design is key to protecting and preserving natural resources, economic growth, cultural heritage and public health. The contributions were selected by means of a rigorous peer-review process and highlight many exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.