Download Free Energy Conservation In Industry Book in PDF and EPUB Free Download. You can read online Energy Conservation In Industry and write the review.

Energy Conservation in the Process Industries provides insight into ways of identifying more important energy efficiency improvements. This book demonstrates how the principles can be employed to practical advantage. Organized into 12 chapters, this book begins with an overview of the energy situation and a background in thermodynamics. This text then describes a staged method to improved energy use to understand where the energy goes and how to calculate the value of losses. Other chapters consider improving facilities based on an understanding of the overall site energy system. This book discusses as well the fundamental process and equipment improvements. The final chapter deals with systematic and sophisticated design methods as well as provides some guidelines and checklists for energy conservation items. This book is a valuable resource for mechanical, lead process, and plant engineers involved in energy conservation. Process designers, plant managers, process researchers, and accountants will also find this book extremely useful.
Energy Conservation in the Process Industries provides insight into ways of identifying more important energy efficiency improvements. This book demonstrates how the principles can be employed to practical advantage. Organized into 12 chapters, this book begins with an overview of the energy situation and a background in thermodynamics. This text then describes a staged method to improved energy use to understand where the energy goes and how to calculate the value of losses. Other chapters consider improving facilities based on an understanding of the overall site energy system. This book discusses as well the fundamental process and equipment improvements. The final chapter deals with systematic and sophisticated design methods as well as provides some guidelines and checklists for energy conservation items. This book is a valuable resource for mechanical, lead process, and plant engineers involved in energy conservation. Process designers, plant managers, process researchers, and accountants will also find this book extremely useful.
It is universally recognized that the end of the current and the beginning of the next century will be characterized by a radical change in the existing trends in the economic development of all countries and a transition to new principles of economic management on the basis of a resource and energy conservation policy. Thus there is an urgent necessity to study methods, technical aids and economic consequences of this change, and particularly, to determine the possible amounts of energy resources which could be conserved (energy "reserves") in different spheres of the national economy. An increased interest towards energy conservation in industry, one of the largest energy consumers, is quite natural and is manifested by the large num ber of publications on this topic. But the majority of publications are devoted to the solution of narrowly defined problems, determination of energy reserves in specific processes and plants, efficiency estimation of individual energy conserva tion measures, etc. However, it is necessary to develop a general methodological approach to the solution of such problems and create a scientific and methodical base for realizing an energy conservation policy. Such an effort is made in this book, which is concerned with methods for studying energy use efficiency in technological processes and estimation of the theoretical and actual energy reserves in a given process, technology, or industrial sector on the basis of their complete energy balances.
Pulp and Paper Industry: Energy Conservation presents a number of energy-efficient technologies and practices that are cost-effective and available for implementation today. Emerging energy-efficient technologies and future prospects in this field are also dealt with. Qualitative and quantitative results/data on energy savings for various steps of pulp and paper making process are presented. There is no specific book on this topic. This will be a comprehensive reference in the field. - Thorough and in-depth coverage of energy-efficient technologies and practices in paper and pulp industry - Presents cost-effective and available for implementation today technologies - Discusses Biotechnological processes, especially enzymatic processes in the pulp and paper industry to reduce the energy consumption and improve the product quality - Presents qualitative and quantitative results/data on energy savings for various steps of pulp and paper making process
This book presents a state-of-the-art analysis of energy efficiency as applied to mining processes. From ground fragmentation to mineral processing and extractive metallurgy, experts discuss the current state of knowledge and the nagging questions that call for further research. It offers an excellent resource for all mine managers and engineers who want to improve energy efficiency to boost both production efficiency and sustainability. It will also benefit graduate students and experienced researchers looking for a comprehensive review of the current state of knowledge concerning energy efficiency in the minerals industry.
Energy efficiency, environmental protection, and processing waste management continue to attract increased attention in the food processing industry. As with other industrial sectors, reducing costs while also reducing environmental impact and improving overall sustainability is becoming an important part of the business process. Providing practica
Energy Efficiency Manual, by Donald Wulfinghoff, is the new comprehensive reference & how-to-book for energy conservation in commercial buildings, residential buildings & industrial plants. It combines the features of encyclopedia, textbook & practical field manual. This handbook details 400 actions for conserving energy in design, construction, retrofit, operation & maintenance. They cover heating & cooling efficiency, water conservation, insulation, air leakage, lighting, daylighting, solar heating & industrial equipment. The second part explains renewable energy sources, passive solar, wind energy, geothermal heat pumps, energy conservation codes, environmentally safe refrigerants, energy management computers & building automation systems, electricity rates, high efficiency motors, boilers, air conditioning equipment, fans, pumps, insulation, high efficiency lamps, thermostats, time controls & many other topics. Written as an easy conversation with readers of all backgrounds, it is packed with ratings, tips, illustrations & examples that make it easy to find the right conservation measures for every application. The clear non-mathematical presentation is for everyone from homeowners to architects, engineers, contractors, property managers, plant operators, business owners, financial managers, energy auditors, public utilities, students & faculty. Environmental protection, comfort, health & safety are major themes. Learn how to improve indoor air quality & avoid "sick building syndrome."
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Identify energy conservation opportunities in buildings and industrial facilities and implement energy efficiency and management practices with confidence This comprehensive engineering textbook helps students master the fundamentals of energy efficiency and management and build confidence in applying basic principles of the field to practice. Written by a team of experienced energy efficiency practitioners and educators, Energy Efficiency and Management for Engineers features foundations and practice of energy efficiency principles for all aspects of energy production, distribution, and consumption. Packed with numerous worked-out examples and over 1,400 end-of-chapter problems, the book makes clear connections between theory and practice and provides the engineering rationale behind all energy efficiency measures. Coverage includes: • Energy management principles • Energy audits • Billing rate structures • Power factor • Specific energy consumption • Cogeneration • Boilers and steam systems • Heat recovery systems • Thermal insulation • Heating and cooling of buildings • Windows and infiltration • Electric motors • Compressed air lines • Lighting systems • Energy efficiency practices in buildings • Economic analysis and environmental impacts
America's economy and lifestyles have been shaped by the low prices and availability of energy. In the last decade, however, the prices of oil, natural gas, and coal have increased dramatically, leaving consumers and the industrial and service sectors looking for ways to reduce energy use. To achieve greater energy efficiency, we need technology, more informed consumers and producers, and investments in more energy-efficient industrial processes, businesses, residences, and transportation. As part of the America's Energy Future project, Real Prospects for Energy Efficiency in the United States examines the potential for reducing energy demand through improving efficiency by using existing technologies, technologies developed but not yet utilized widely, and prospective technologies. The book evaluates technologies based on their estimated times to initial commercial deployment, and provides an analysis of costs, barriers, and research needs. This quantitative characterization of technologies will guide policy makers toward planning the future of energy use in America. This book will also have much to offer to industry leaders, investors, environmentalists, and others looking for a practical diagnosis of energy efficiency possibilities.
How do we assess energy efficiency? The methodology proposed in this book links the efficiency at the system level to the data - flows and established knowledge - found at the process level. This analysis determines the dependence of the system efficiency on physical characteristics of its processes. Unless this is done, these characteristics may be sources of large errors, by factors of one hundred or more. The suggested methodology saves time of analysis and gives a realistic assessment of the remaining uncertainties. Complete energy systems cannot dissipate more energy than they extract, directly or indirectly. Historic exploitation of underground coal could not run a steam engine for operations which require more coal than it can lift. Can the agro-ethanol industry operate without external energies, (ie: is it more than self-reliant)?