Download Free Energy And Power Generation Handbook Book in PDF and EPUB Free Download. You can read online Energy And Power Generation Handbook and write the review.

Covers aspects of power generation from all known sources of energy that are in use around the globe. It contains power and energy sources such as solar, wind, hydro, tidal and wave power, bio energy including bio-mass and bio-fuels, waste-material, geothermal, fossil, petroleum, gas and nuclear. Experts were also invited to cover the role of nano-technology and the role of NASA in photovoltaic and wind energy in power generation.
We’ve all lived through long hot summers with power shortages, brownouts, and blackouts. But at last, all the what-to-do and how-to-do it information you’ll need to handle a full range of operation and maintenance tasks at your fingertips. Written by a power industry expert, Power Generation Handbook: Selection, Applications, Operation, Maintenance helps you to gain a thorough understanding of all components, calculations, and subsystems of the various types of gas turbines, steam power plants, co-generation, and combined cycle plants. Divided into five sections, Power Generation Handbook: Selection, Applications, Operation, Maintenance provides a thorough understanding of co-generation and combined cycle plants. Each of the components such as compressors, gas and steam turbines, heat recovery steam generators, condensers, lubricating systems, transformers, and generators are covered in detail. The selection considerations, operation, maintenance and economics of co-generation plants and combined cycles as well as emission limits, monitoring and governing systems will also be covered thoroughly. This all-in-one resource gives you step-by-step guidance on how to maximize the efficiency, reliability and longevity of your power generation plant.
Coal accounts for approximately one quarter of world energy consumption and of the coal produced worldwide approximately 65% is shipped to electricity producers and 33% to industrial consumers, with most of the remainder going to consumers in the residential and commercial sectors. The total share of total world energy consumption by coal is expected to increase to almost 30% in 2035. This book describes the challenges and steps by which electricity is produced form coal and deals with the challenges for removing the environmental objections to the use of coal in future power plants. New technologies are described that could virtually eliminate the sulfur, nitrogen, and mercury pollutants that are released when coal is burned for electricity generation. In addition, technologies for the capture greenhouse gases emitted from coal-fired power plants are described and the means of preventing such emissions from contributing to global warming concerns. Written by one of the world’s leading energy experts, this volume is a must-have for any engineer, scientist, or student working in this field, providing a valuable reference and guide in a quickly changing field.
Geothermal Power Generation, New Developments and Innovations, Second Edition provides an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security. Edited by respected and leading experts in the field, this book provides a comprehensive overview of the major aspects of geothermal power production. Chapters cover resource discovery, resource characterization, energy conversion systems, design, economic considerations, and a range of fascinating and updated case studies from across the world.Geothermal resources are considered renewable and are currently the only renewable source able to generate baseload electricity while producing very low levels of greenhouse gas emissions, thus playing a key role in future energy needs. - Provides readers with a comprehensive and systematic overview of geothermal power generation - Presents an update to advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security - Edited by authorities in the field and contributed to by global experts in their areas - Supports sustainability and the United Nations Sustainable Development Goals (UN SDGs) 7, 9, 11 and 13
This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works.
Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants.After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems.With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. - Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants - Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems - Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Unlike more technical texts stuffed with formulae and theories, this book explains in plain English how power is created and replaces formulae with everyday examples and easy-to-understand illustrations. It opens with an explanation of how electricity is generated, then covers the planning and development of electric power stations, emphasizing modern considerations of merchant power plants, repowering, and the growth of gas turbine generation. The "facts" of generation are covered in part two--boilers, turbines, generators, hydro and pumped storage, and "alternative" generations sources, suchs geothermal, tidal, solar, and wind. Maintenance and operations are covered in basic overview format. Finally, environmental considerations--again, an increasing concern in light of deregulation and environmental law--are reviewed. In addition, the authors cover specific features and fuel-types in nontechnical terms. Industry newcomers will appreciate this clear explanation of how power is created.
This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses.· Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. - Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors - Includes new trends and developments since the first publication, as well as brand new case studies and appendices - Covers the latest research, developments and design information surrounding generation IV nuclear reactors