Download Free Energetics Of Biological Macromolecules Book in PDF and EPUB Free Download. You can read online Energetics Of Biological Macromolecules and write the review.

Essential publication for researchers in all fields of life sciences. Key Features * Major topics covered include: * Deciphering rules of helix stability in peptides * Protein Folding in Membranes * Molecular Crowding * Study of the Bohr Effect in Hemoglobin Intermediates * Photoacoustic Calorimetry of Proteins * Theoretical Aspects of Isothermal Titration Calorimetry * Energetic Methods to Study Bifunctional Biotin Repressor.
Volume 323 of Methods in Enzymology is dedicated to the energetics of biological macromolecules. Understanding the molecular mechanisms underlying a biological process requires detailed knowledge of the structural relationships within the system and an equally detailed understanding of the energetic driving forces that control the structural interactions. This volume presents modern thermodynamic techniques currently being utilized to study the energetic driving forces in biological systems. It will be a useful reference source and textbook for scientists and students whose goal is to understand the energetic relationships between macromoleculer structures and biological functions. This volume supplements Volumes 259 and Volume 295 of Methods in Enzymology.Key Features* Probing Stability of Helical Transmembrane Proteins* Energetics of Vinca Alkaloid Interactions with Tubulin* Deriving Complex Ligand Binding Formulas* Mathematical Modeling of Cooperative Interactions in Hemoglobin* Analysis of Interactions of Regulatory Protein TyrR with DNA* Parsing Free Energy of Drug-DNA Interactions* Use of Fluorescence as Thermodynamics Tool
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
This book provides the first systematic treatment of the thermodynamic theory of site-specific effects in biological macromolecules. It describes the phenomenological and conceptual bases required to allow a mechanistic understanding of these effects from analysis of experimental data. The thermodynamic theory also results in novel experimental strategies that enable the derivation of information on local, site-specific properties of a macromolecular system from analysis of perturbed global properties. The treatment focuses on binding phenomena, but is amenable to extension both conceptually and formally to the analysis of other cooperative processes, such as folding and helix-coil transitions. This book will interest any scientist involved in structure-function studies of biological macromolecules, or as a text for graduate students in biochemistry and biophysics.
Enrico Di Cera, a rising star in biophysics, has organized a superb group of authors to write substantial chapters covering the most exciting and central issues relating to the bioenergetic aspects of proteins, nucleic acids, and their interactions. Topics covered in this book are protein and nucleic acid folding and stability, enzyme-substrate interactions, prediction of the affinity of complexes, electrostatics, and non-equilibrium aspects of protein function. The breadth of the topics covered in this book illustrates the growing importance of thermodynamic approaches in the study of biological phenomena. The book should be of wide interest to biophysicists, biochemists, and structural biologists.
Biological Physics focuses on new results in molecular motors, self-assembly, and single-molecule manipulation that have revolutionized the field in recent years, and integrates these topics with classical results. The text also provides foundational material for the emerging field of nanotechnology.
"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.
This book provides an integrated treatment of the structure and function of nucleic acids, proteins, and glycans, including thorough coverage of relevant computational biochemistry. The text begins with an introduction to the biomacromolecules, followed by discussion of methods of isolation and purification, physiochemical and biochemical properties, and structural characteristics. The next section of the book deals with sequence analysis, analysis of conformation using spectroscopy, chemical synthesis, and computational approaches. The following chapters discuss biomolecular interactions, enzyme action, gene transmission, signal transduction, and biomacromolecular informatics. The author concludes with presenting the latest findings in genomics, proteomics, glycomics, and biomacromolecular evolution. This text is an invaluable resource for research professionals wishing to move into genomics, proteomics, and glycomics research. It is also useful for students in biochemistry, molecular biology, bioengineering, biotechnology, and bioinformatics.