Download Free Endothelial Dynamics In Health And Disease Book in PDF and EPUB Free Download. You can read online Endothelial Dynamics In Health And Disease and write the review.

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.
The endothelium enables communication between blood and tissues and is actively involved in cardiovascular homeostasis. Endothelial dysfunction has been recognized as an early step in the development of cardiovascular diseases: respectively, endothelium represents a potential therapeutic niche with multiple targets. The purpose of the book is to point out some recent findings of endothelial physiology and pathophysiology emphasizing various aspects of endothelial dysfunction connected to the body's internal and external environment. While basic features of the endothelium are presented in an introductory chapter, the authors of the following 17 chapters have provided extensive insight into some selected topics of endothelial (dys)function. The book would hopefully be useful for anyone interested in recapitulating endothelial (patho)physiology and expanding knowledge of molecular mechanisms involved in endothelial dysfunction, relevant also for further clinical investigations.
Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. - Provides an essential digest of primary research from many fields and disciplines in one convenient volume - Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives - Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science
Vascular Responses to Pathogens focuses on the growing research from leaders in the field for both the short and long-term impact of pathogens on the vasculature. It discusses various organisms, including bacteria, parasites, and viruses, and their role in key events leading to vascular disease. Formatted to discuss the topic of the interaction of pathogens with the vascular rather than individual diseases described separately, this reference demonstrates that common mechanisms are at play in many different diseases because they have a similar context, their vasculature. This all-inclusive reference book is a must-have tool for researchers and practicing clinicians in the areas of vascular biology, microvasculature, cardiology, and infectious disease. - Covers a wide spectrum of organisms and provides analysis of pathogens and current therapeutic strategies in the context of their vasculature - Provides detailed perspectives on key components contributing to vascular pathogens from leaders in the field - Interfaces between both vascular biology and microbiology by encompassing information on how pathogens affect both macro and microvasculature - Includes coverage of the clinical aspects of sepsis and current therapeutic strategies and anti-sepsis drugs
The partition of fluid between the vascular and interstitial compartments is regulated by forces (hydrostatic and oncotic) operating across the microvascular walls and the surface areas of permeable structures comprising the endothelial barrier to fluid and solute exchange, as well as within the extracellular matrix and lymphatics. In addition to its role in the regulation of vascular volume, transcapillary fluid filtration also allows for continuous turnover of water bathing tissue cells, providing the medium for diffusional flux of oxygen and nutrients required for cellular metabolism and removal of metabolic byproducts. Transendothelial volume flow has also been shown to influence vascular smooth muscle tone in arterioles, hydraulic conductivity in capillaries, and neutrophil transmigration across postcapillary venules, while the flow of this filtrate through the interstitial spaces functions to modify the activities of parenchymal, resident tissue, and metastasizing tumor cells. Likewise, the flow of lymph, which is driven by capillary filtration, is important for the transport of immune and tumor cells, antigen delivery to lymph nodes, and for return of filtered fluid and extravasated proteins to the blood. Given this background, the aims of this treatise are to summarize our current understanding of the factors involved in the regulation of transcapillary fluid movement, how fluid movements across the endothelial barrier and through the interstitium and lymphatic vessels influence cell function and behavior, and the pathophysiology of edema formation. Table of Contents: Fluid Movement Across the Endothelial Barrier / The Interstitium / The Lymphatic Vasculature / Pathophysiology of Edema Formation
The vascular endothelium lining the inner surface of blood vessels serves as the first interface for circulating blood components to interact with cells of the vascular wall and surrounding extravascular tissues. In addition to regulating blood delivery and perfusion, a major function of vascular endothelia, especially those in exchange microvessels (capillaries and postcapillary venules), is to provide a semipermeable barrier that controls blood–tissue exchange of fluids, nutrients, and metabolic wastes while preventing pathogens or harmful materials in the circulation from entering into tissues. During host defense against infection or tissue injury, endothelial barrier dysfunction occurs as a consequence as well as cause of inflammatory responses. Plasma leakage disturbs fluid homeostasis and impairs tissue oxygenation, a pathophysiological process contributing to multiple organ dysfunction associated with trauma, infection, metabolic disorder, and other forms of disease. In this book, we provide an updated overview of microvascular endothelial barrier structure and function in health and disease. The discussion is initiated with the basic physiological principles of fluid and solute transport across microvascular endothelium, followed by detailed information on endothelial cell–cell and cell–matrix interactions and the experimental techniques that are employed to measure endothelial permeability. Further discussion focuses on the signaling and molecular mechanisms of endothelial barrier responses to various stimulations or drugs, as well as their relevance to several common clinical conditions. Taken together, this book provides a comprehensive analysis of microvascular endothelial cell and molecular pathophysiology. Such information will assist scientists and clinicians in advanced basic and clinical research for improved health care.
​Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.