Download Free Encyclopedia Of Microfluidics And Nanofluidics Book in PDF and EPUB Free Download. You can read online Encyclopedia Of Microfluidics And Nanofluidics and write the review.

Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.
In the present book, various applications of microfluidics and nanofluidics are introduced. Microfluidics and nanofluidics span a broad array of disciplines including mechanical, materials, and electrical engineering, surface science, chemistry, physics and biology. Also, this book deals with transport and interactions of colloidal particles and biomolecules in microchannels, which have great importance to many microfluidic applications, such as drug delivery in life science, microchannel heat exchangers in electronic cooling, and food processing industry. Furthermore, this book focuses on a detailed description of the thermal transport behavior, challenges and implications that involve the development and use of HTFs under the influence of atomistic-scale structures and industrial applications.
A comprehensive, two-volume handbook on Microfluidics and Nanofluidics, this text covers fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications with special emphasis on the energy sector. Each chapter begins with introductory coverage to a subject and then narrows in on advanced techniques and concepts, thus making it valuable to students and practitioners. The author pays special attention to applications of microfluidics in the energy sector and provides insight into the world of opportunities nanotechnology has to offer. Figures, tables, and equations to illustrate concepts.
This comprehensive handbook presents fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications of microfluidics and nanofluidics. The second volume focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals.
This book reviews the latest advancement of microfluidics and nanofluidics with a focus on electrokinetic phenomena in microfluidics and nanofluidics. It provides fundamental understanding of several new interfacial electrokinetic phenomena in microfluidics and nanofluidics. Chapter 1 gives a brief review of the fundamentals of interfacial electrokinetics. Chapter 2 shows induced charge electrokinetic transport phenomena. Chapter 3 presents the new advancement in DC dielectrophoresis. Chapter 4 introduces a novel nanofabrication method and the systematic studies of electrokinetic nanofluidics. Chapter 5 presents electrokinetic phenomena associated with Janus particles and Janus droplets. Chapter 6 introduces a new direction of electrokinetic nanofluidics: nanofluidic iontronics. Chapter 7 discusses an important differential resistive pulse sensor in microfluidics and nanofluidics.
This text focuses on the physics of fluid transport in micro- and nanofabricated liquid-phase systems, with consideration of gas bubbles, solid particles, and macromolecules. This text was designed with the goal of bringing together several areas that are often taught separately - namely, fluid mechanics, electrodynamics, and interfacial chemistry and electrochemistry - with a focused goal of preparing the modern microfluidics researcher to analyse and model continuum fluid mechanical systems encountered when working with micro- and nanofabricated devices. This text serves as a useful reference for practising researchers but is designed primarily for classroom instruction. Worked sample problems are included throughout to assist the student, and exercises at the end of each chapter help facilitate class learning.
The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.
Introduces the reader to Circulating Tumor Cells (CTCs), their isolation method and analysis, and commercially available platforms Presents the historical perspective and the overview of the field of circulating tumor cells (CTCs) Discusses the state-of-art methods for CTC isolation, ranging from the macro- to micro-scale, from positive concentration to negative depletion, and from biological-property-enabled to physical-property-based approaches Details commercially available CTC platforms Describes post-isolation analysis and clinical translation Provides a glossary of scientific terms related to CTCs