Download Free Enantioselective Synthesis Of Iminosugars And Hexoses From Furfural Book in PDF and EPUB Free Download. You can read online Enantioselective Synthesis Of Iminosugars And Hexoses From Furfural and write the review.

This third edition is a comprehensive and extended study about the best known approaches for preparing the main types of glycosides, covering the classic and more recent glycosylation reactions used for preparing simple and challenging glycosides currently used as potent antiviral and antineoplastic drugs, or fluorogenic substrates used for enzymatic detection in cell biology. Besides, this new edition provides more examples of the glycosidic methodologies followed for preparing complex glycoconjugates such as glycoproteins and glycosphingolipids and gangliosides used as adjuvants or as synthetic vaccines candidates. Also, additional mechanistic evidence is presented for better understanding of the glycosylation reaction, trying to identify the variables mainly depending on protecting and leaving groups, as well as catalyst and reaction condition which altogether directs the anomeric stereo control. A chapter on the glycoside hydrolysis is included in view of the increasing interest in the use of biomass as a natural and renewable source for obtaining important intermediates or products used in food or valuable materials. The author includes information in the characterization of glycosides section with the aim of giving additional tools for the structural assignment through NMR, X-Ray and mass spectra techniques.
Intrigued as much by its complex nature as by its outsider status in traditional organic chemistry, the editors of The Organic Chemistry of Sugars compile a groundbreaking resource in carbohydrate chemistry that illustrates the ease at which sugars can be manipulated in a variety of organic reactions. Each chapter contains numerous examples demonst
The growing importance of glycobiology and carbohydrate chemistry in modern biotechnology and the pharmaceutical industry makes accurate carbohydrate analysis indispensable. This book provides the principles and protocols of various fundamental carbohydrate analysis methods. Choice of method is entirely dependent upon the type of material being investigated (biological samples, food products, etc.), and the level of structural detail required, i.e. sugar content, compositional analysis, linkages between the sugar components, or the total chemical structure of a given molecule. Full structural characterization of carbohydrate chains requires significant time, resources, and skill in several methods of analysis; no single technique can address all glycan analysis needs. This book summarizes several existing analytical techniques (both chemical and physical) in an introductory volume designed for the non-expert researcher or novice scientist. While background in carbohydrate chemistry is assumed, all information necessary to understanding the described techniques is addressed in the text.
The use of natural catalysts - enzymes - for the transformation of non-natural is not at all new: they have been used for more man-made organic compounds than one hundred years, employed either as whole cells, cell organelles or isolated enzymes [1]. Certainly, the object of most of the early research was totally different from that of the present day. Thus the elucidation of biochemical pathways and enzyme mechanisms was in the foreground of the reasearch some decades ago. It was mainly during the 1980s that the enormous potential of applying natural catalysts to transform non-natural organic compounds was recognized. What started as a trend in the late 1970s could almost be called a fashion in synthetic organic chemistry in the 1990s. Although the early euphoria during the 'gold rush' in this field seems to have eased somewhat, there is still no limit to be seen for the future development of such methods. As a result of this extensive, recent research, there have been an estimated 5000 papers published on the subject [2]. To collate these data as a kind of 'super-review' would clearly be an impossible task and, furthermore, such a hypothetical book would be unpalatable for the non-expert.
Carbohydrates offer a ready source of enantiomerically pure starting materials. They have been used for the imaginative synthesis of a wide range of compounds, and have been found to be effective chiral auxiliaries which enable the introduction of a range of functionalities in a highly enantioselective manner. In a subject dominated by volumes at research and professional level, this book provides a broad understanding of the use of carbohydrates in organic synthesis, at postgraduate student level. Emphasis is placed on retrosynthetic analysis, with discussion of why a particular synthetic route has been chosen, and mechanistic explanations are provided for key and novel reactions. Wherever possible, the authors highlight points of general significance to organic synthesis. Selected experimental conditions and reaction details are incorporated to ensure that information can be utilised in research. The book is extensively referenced and so provides a convenient point of entry to the primary literature.
Carbon nanostructures, namely fullerenes, single and multiwall carbon nanotubes, graphene as well as the most recent graphene quantum dots and carbon nanodots, have experienced a tremendous progress along the last two decades in terms of the knowledge acquired on their chemical and physical properties. These insights have enabled their increasing use in biomedical applications, from scaffolds to devices. Edited by renowned experts in the subject, this book collects and delineates the most notable advances within the growing field surrounding carbon nanostructures for biomedical purposes. Exploration ranges from fundamentals around classifications to toxicity, biocompatibility and the immune response. Modified nanocarbon-based materials and emergent classes, such as carbon dots and nanohorns are discussed, with chapters devoted from carriers for drug delivery and inhibitors of emergent viruses infection, to applications across imaging, biosensors, tissue scaffolding and biotechnology. The book will provide a valuable reference resource and will extensively benefit researchers and professionals working across the fields of chemistry, materials science, and biomedical and chemical engineering.