Download Free Emerging Research On Bioinspired Materials Engineering Book in PDF and EPUB Free Download. You can read online Emerging Research On Bioinspired Materials Engineering and write the review.

Bioinspired materials can be defined as the organic or inorganic materials that mimic naturally occurring substances. With applications in a number of fields such as biomedical, chemical, mechanical, and civil engineering, research on the development of biologically-inspired materials is essential to further advancement. Emerging Research on Bioinspired Materials Engineering provides insight on fabrication strategies for bioinspired materials as well as a collective review of their current and prospective applications. Highlighting essential research on bioinspired processes and the nano-structural, physical, chemical, thermal, and mechanical aspects of biologically-inspired materials, this timely publication is an ideal reference source for engineers, researchers, scholars, and graduate students in the fields of materials science and engineering, nanotechnology, biotechnology, and biomedical materials science.
Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.
The huge consumption of earth’s natural resources and the reliance on industrial manufactured products have produced significant impacts on the environment. As such, new strategies must be adopted in order to support the protection and continued development of numerous natural resources. Mechanical Properties of Natural Fiber Reinforced Polymers: Emerging Research and Opportunities is a critical scholarly resource that examines green energy sources and material enhancements that will help to solve ecological problems. Featuring coverage on a broad range of topics, such as harvesting techniques, origins of natural fibers, and modeling for textile composites, this book is geared towards engineers, researchers, scholars, and graduate students in the fields of materials science and engineering.
Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians
Metal-organic frameworks (MOFs) are some of the most discussed materials of the last decade. Their extraordinary porosity and functionality from metals and organic linkers make them one of the most promising materials for a vast array of applications. The easy tunability of their pore size and shape from the micro- to meso-scale by changing the connectivity of the inorganic moiety and the nature of the organic linkers makes these materials special. Moreover, by combining with other suitable materials, the properties of MOFs can be improved further for enhanced functionality/stability, ease of preparation, and selectivity of operation. Emerging Applications and Implementations of Metal-Organic Frameworks combines the latest empirical research findings with relevant theoretical frameworks in this area in order to improve the reader’s understanding of MOFs and their different applications in areas that include drug delivery, heavy metal removal from water, and gas storage. The design and synthesis of MOFs are also investigated along with the preparation of composites of MOFs. While covering applications that include water defluoridation, rechargeable batteries, and pharmaceutically adapted drug delivery systems, the book’s target audience is comprised of professionals, researchers, academicians, and students working in the field of physical and polymer chemistry, physics, engineering science, and environmental science.
Vehicular traffic congestion and accidents remain universal issues in today’s world. Due to the continued growth in the use of vehicles, optimizing traffic management operations is an immense challenge. To reduce the number of traffic accidents, improve the performance of transportation systems, enhance road safety, and protect the environment, vehicular ad-hoc networks have been introduced. Current developments in wireless communication, computing paradigms, big data, and cloud computing enable the enhancement of these networks, equipped with wireless communication capabilities and high-performance processing tools. Cloud-Based Big Data Analytics in Vehicular Ad-Hoc Networks is a pivotal reference source that provides vital research on cloud and data analytic applications in intelligent transportation systems. While highlighting topics such as location routing, accident detection, and data warehousing, this publication addresses future challenges in vehicular ad-hoc networks and presents viable solutions. This book is ideally designed for researchers, computer scientists, engineers, automobile industry professionals, IT practitioners, academicians, and students seeking current research on cloud computing models in vehicular networks.
Despite the development of advanced methods, models, and algorithms, optimization within structural engineering remains a primary method for overcoming potential structural failures. With the overarching goal to improve capacity, limit structural damage, and assess the structural dynamic response, further improvements to these methods must be entertained. Optimization of Design for Better Structural Capacity is an essential reference source that discusses the advancement and augmentation of optimization designs for better behavior of structure under different types of loads, as well as the use of these advanced designs in combination with other methods in civil engineering. Featuring research on topics such as industrial software, geotechnical engineering, and systems optimization, this book is ideally designed for architects, professionals, researchers, engineers, and academicians seeking coverage on advanced designs for use in civil engineering environments.
Bioinspired and Biomimetic Materials for Drug Delivery delves into the potential of bioinspired materials in drug delivery, detailing each material type and its latest developments. In the last decade, biomimetic and bioinspired materials and technology has garnered increased attention in drug delivery research. Various material types including polymer, small molecular, protein, peptide, cholesterol, polysaccharide, nano-crystal and hybrid materials are widely considered in drug delivery research. However, biomimetic and bioinspired materials and technology have shown promising results for use in therapeutics, due to their high biocompatibility and reduced immunogenicity. Such materials include dopamine, extracellular exosome, bile acids, ionic liquids, and red blood cell. This book covers each of these materials in detail, reviewing their potential and usage in drug delivery. As such, this book will be a great source of information for biomaterials scientists, biomedical engineers and those working in pharmaceutical research. - Explores latest developments for a broad range of bioinspired and biomimetic materials for drug delivery applications - Helps researchers overcome the challenges of biocompatibility and immunogenicity in drug development - Provides both theoretical and practical knowledge in regards to materials characterization and use in a range of drugs
Originally, scientists believed that molecules were three-dimensional; however, studies have proven that geometric dimensions are continuous. Therefore, molecules are able to have higher dimensions which influences how they interact with other molecules leading to advances in various fields including nanomedicine, nanotoxicology and quantum biology. Chemical Compound Structures and the Higher Dimension of Molecules: Emerging Research and Opportunities is a pivotal reference work studying the relationship between chemical compounds and dimensional space. Featuring comprehensive coverage across a range of related topics, such as convex polytypes, Euler-Poincaré equations, intermolecular interactions, and the Schrodiner equation, this book is an ideal reference source for academicians, researchers, and advance-level students seeking innovative research on molecule dimensions and interactions.
Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. Applying Integration Techniques and Methods in Distributed Systems is a critical scholarly publication that defines the current state of distributed systems, determines further goals, and presents architectures and service frameworks to achieve highly integrated distributed systems and presents solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting topics such as multimedia, programming languages, and smart environments, this book is ideal for system administrators, integrators, designers, developers, researchers, and academicians.