Download Free Emerging Nanotechnologies In Immunology Book in PDF and EPUB Free Download. You can read online Emerging Nanotechnologies In Immunology and write the review.

Emerging Nanotechnologies in Immunology aims to deliver a systematic and comprehensive review of data concerning the nature of interaction and nano-related risks between the nanophamaceuticals currently in the pipeline of S&T development for skin, ocular, and nasal drug delivery, including absorption, toxicity, and the ability to distribute after systemic exposure.The scientific development of manufactured nanomaterials for drug delivery is increasing rapidly. One of the most prominent applications is topical drug delivery, where cutaneous, ocular, and nasal exposure becomes even more relevant. These targets are the first barrier that nanoparticles encounter when in contact with the human body.The contributors addresses a representative set of the broad spectrum of nanopharmaceuticals currently being used, including cationic lipid nanoparticles, polymeric PLGA, PLA nanoparticles, biomacromolecules-based nanoparticles, and other scaffolds tissue engineered skin substitutes. Regulation and risk is also covered, since the safety of these nanophamaceuticals still represents a barrier to their wide innovative use. - Provides the reader with a thorough knowledge of the safety aspects of nanopharmaceuticals which are currently under research - Focuses on the characterization and quantification of the nanopharmaceuticals - Allows readers to understand the correlation between the nature of the materials and their potential nanotoxicological effects - Includes an overview of regulatory aspects related to the R&D of nanopharmaceuticals
Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices covers the modern micro and nanotechnologies used for diagnosis, drug delivery, and theranostics using micro, nano, and implantable systems. In-depth coverage of all aspects of disease treatment is included. In addition, the book covers cutting-edge research and technology that will help readers gain knowledge of novel approaches and their applications to improve drug/agent specificity for diagnosis and efficient disease treatment. It is a comprehensive guide for medical specialists, the pharmaceutical-industry, and academic researchers discussing the impact of nanotechnology on diagnosis, drug delivery, and theranostics. - Gives readers working in immunology, drug delivery, and medicine a greater awareness on how novel nanotechnology orientated methods can help improve treatment - Provides readers with backgrounds in nanotechnology, chemistry, and materials science an understanding on how nanotechnology is used in immunology and drug delivery - Includes focused coverage of the use of nanodevices in diagnostics, therapeutics, and theranostics not offered by other books
Emerging Nanotechnologies for Renewable Energy offers a detailed overview of the benefits and applications of nanotechnology in the renewable energy sector. The book highlights recent work carried out on the emerging role of nanotechnology in renewable energy applications, ranging from photovoltaics, to battery technology and energy from waste. Written by international authors from both industry and academia, the book covers topics including scaling up from laboratory to industrial scale. It is a valuable resource for students at postgraduate and advanced undergraduate levels, researchers in industry and academia, technology leaders, and policy and decision-makers in the energy and engineering sectors. - Offers insights into a wide range of nanoscale technologies for the generation, storage and transfer of energy - Shows how nanotechnology is being used to create new, more environmentally friendly energy solutions - Assesses the challenges involved in scaling up nanotechnology-based energy solutions to an industrial scale
The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilization. Each chapter presents a broad literature review of the given focus area, describes protocols and resources available to support research in the individual focus areas, highlights challenges, and outlines unanswered questions and future directions. In addition, the Handbook includes an overview of and serves a guide to the physicochemical characterization of engineered nanomaterials essential to conducting meaningful immunological studies of nanoparticles. Regulations related to immunotoxicity testing of materials prior to their translation into the clinic are also reviewed.The Handbook is written by top experts in the field of nanomedicine, nanotechnology, and translational bionanotechnology, representing academia, government, industry, and consulting organizations, and regulatory agencies. The Handbook is designed to serve as a textbook for students, a practical guide for research laboratories, and an informational resource for scientific consultants, reviewers, and policy makers. It is written such that both experts and beginners will find the information highly useful and applicable.
This book provides a comprehensive overview of how use of micro- and nanotechnology (MNT) has allowed major new advance in vaccine development research, and the challenges that immunologists face in making further progress. MNT allows the creation of particles that exploit the inherent ability of the human immune system to recognize small particles such as viruses and toxins. In combination with minimal protective epitope design, this permits the creation of immunogenic particles that stimulate a response against the targeted pathogen. The finely tuned response of the human immune system to small particles makes it unsurprising that many of the lead adjuvants and vaccine delivery systems currently under investigation are based on nanoparticles. - Provides a comprehensive and unparalleled overview of the role of micro- and nanotechnology in vaccine development - Allows researchers to quickly familiarize themselves with the broad spectrum of vaccines and how micro- and nanotechnologies are applied to their development - Includes a combination of overview chapters setting out general principles, and focused content dealing with specific vaccines, making it useful to readers from a variety of disciplines
New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). The use of nanostructures that will work in harmony with the body's own regenerative processes (eg, to restore tooth structure or alveolar bone) are moving into clinical practice. This book brings together an international team of experts from the fields of nanomaterials, biomedical engineering and dentistry, to cover the new materials and techniques with potential for use intra-orally or extra-orally for the restoration, fixation, replacement, or regeneration of hard and soft tissues in and about the oral cavity and craniofacial region. New dental nanotechnologies include the use of advanced inorganic and organic materials, smart and biomimetic materials, tissue engineering and drug delivery strategies. - Book prepared by an interdisciplinary and international group of bio-nanomaterial scientists and dental/oral biomedical researchers - Comprehensive professional reference for the subject covering materials fabrication and use of materials for all major diagnostic and therapeutic dental applications – repair,restoration, regeneration, implants and prevention - Book focuses in depth on the materials manufacturing processes involved with emphasis on pre-clinical and clinical applications, use and biocompatibility
Nanomedicine is the field of science that deals with organic applications of medicine at the nano-scale level. It primarily addresses finding, anticipating, and treating sickness, as well as using nanotechnology to assist in controlling human frameworks at the cellular level. The nature of nanotechnology allows it to address numerous medical issues in humans. This book offers comprehensive information to better comprehend and apply multifunctional nanoparticles in nanomedicine, and thus open avenues in the field. Medicating at the nanolevel is an exceptional therapeutic avenue, as it avoids symptoms associated with conventional medicines. This book investigates recent insights into structuring novel drug delivery frameworks. It concentrates on the physical characteristics of drug delivery transporters, and the preliminary procedures involved in their use. The book offers in-depth detail that benefits academics and researchers alike, containing broad research from experts in the field, and serves as a guide for students and researchers in the field of nanomedicine, drug delivery, and nanotechnology.
This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.
Tissue engineering involves seeding of cells on bio-mimicked scaffolds providing adhesive surfaces. Researchers though face a range of problems in generating tissue which can be circumvented by employing nanotechnology. It provides substrates for cell adhesion and proliferation and agents for cell growth and can be used to create nanostructures and nanoparticles to aid the engineering of different types of tissue. Written by renowned scientists from academia and industry, this book covers the recent developments, trends and innovations in the application of nanotechnologies in tissue engineering and regenerative medicine. It provides information on methodologies for designing and using biomaterials to regenerate tissue, on novel nano-textured surface features of materials (nano-structured polymers and metals e.g.) as well as on theranostics, immunology and nano-toxicology aspects. In the book also explained are fabrication techniques for production of scaffolds to a series of tissue-specific applications of scaffolds in tissue engineering for specific biomaterials and several types of tissue (such as skin bone, cartilage, vascular, cardiac, bladder and brain tissue). Furthermore, developments in nano drug delivery, gene therapy and cancer nanotechonology are described. The book helps readers to gain a working knowledge about the nanotechnology aspects of tissue engineering and will be of great use to those involved in building specific tissue substitutes in reaching their objective in a more efficient way. It is aimed for R&D and academic scientists, lab engineers, lecturers and PhD students engaged in the fields of tissue engineering or more generally regenerative medicine, nanomedicine, medical devices, nanofabrication, biofabrication, nano- and biomaterials and biomedical engineering. - Provides state-of-the-art knowledge on how nanotechnology can help tackling known problems in tissue engineering - Covers materials design, fabrication techniques for tissue-specific applications as well as immunology and toxicology aspects - Helps scientists and lab engineers building tissue substitutes in a more efficient way
Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood outlines the fundamental design concepts and emerging applications of nanotechnology in hematology, blood transfusion and artificial blood. This book is an important reference source for materials scientists, engineers and biomedical scientists who are looking to increase their understanding of how nanotechnology can lead to more efficient blood treatments. Sections focus on how nanotechnology could offer new routes to address challenging and pressing issues facing rare blood diseases and disorders and how nanomaterials can be used as artificial cell-like systems (compartmentalized biomimetic nanocontainers), which are especially useful in drug delivery. For artificial blood, the nanotechnological approach can fabricate artificial red blood cells, platelet substitutes, and white blood cell substitutes with their inherent enzyme and other supportive systems. In addition, nanomaterials can promote blood vessel growth and reserve red blood cells at a positive temperature. - Provides information on how nanotechnology can be used to create more efficient solutions for blood transfusions and hematology treatments - Explores the major nanomaterial types that are used for these treatments - Assesses the major challenges of using nanomaterials hematology